_id
stringlengths
2
6
partition
stringclasses
3 values
text
stringlengths
87
6.4k
title
stringclasses
1 value
language
stringclasses
1 value
meta_information
dict
d101
train
def pdf(x, mu, std): """Probability density function (normal distribution)""" return (1.0 / (std * sqrt(2 * pi))) * np.exp(-(x - mu) ** 2 / (2 * std ** 2))
PYTHON
{ "dummy_field": "" }
d102
train
def bytes_to_c_array(data): """ Make a C array using the given string. """ chars = [ "'{}'".format(encode_escape(i)) for i in decode_escape(data) ] return ', '.join(chars) + ', 0'
PYTHON
{ "dummy_field": "" }
d103
train
def gray2bgr(img): """Convert a grayscale image to BGR image. Args: img (ndarray or str): The input image. Returns: ndarray: The converted BGR image. """ img = img[..., None] if img.ndim == 2 else img out_img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) return out_img
PYTHON
{ "dummy_field": "" }
d104
train
def mean_date(dt_list): """Calcuate mean datetime from datetime list """ dt_list_sort = sorted(dt_list) dt_list_sort_rel = [dt - dt_list_sort[0] for dt in dt_list_sort] avg_timedelta = sum(dt_list_sort_rel, timedelta())/len(dt_list_sort_rel) return dt_list_sort[0] + avg_timedelta
PYTHON
{ "dummy_field": "" }
d105
train
def rotate_img(im, deg, mode=cv2.BORDER_CONSTANT, interpolation=cv2.INTER_AREA): """ Rotates an image by deg degrees Arguments: deg (float): degree to rotate. """ r,c,*_ = im.shape M = cv2.getRotationMatrix2D((c//2,r//2),deg,1) return cv2.warpAffine(im,M,(c,r), borderMode=mode, flags=cv2.WARP_FILL_OUTLIERS+interpolation)
PYTHON
{ "dummy_field": "" }
d106
train
def similarity(self, other): """Calculates the cosine similarity between this vector and another vector.""" if self.magnitude == 0 or other.magnitude == 0: return 0 return self.dot(other) / self.magnitude
PYTHON
{ "dummy_field": "" }
d107
train
def rotate_img(im, deg, mode=cv2.BORDER_CONSTANT, interpolation=cv2.INTER_AREA): """ Rotates an image by deg degrees Arguments: deg (float): degree to rotate. """ r,c,*_ = im.shape M = cv2.getRotationMatrix2D((c//2,r//2),deg,1) return cv2.warpAffine(im,M,(c,r), borderMode=mode, flags=cv2.WARP_FILL_OUTLIERS+interpolation)
PYTHON
{ "dummy_field": "" }
d108
train
def _calculate_distance(latlon1, latlon2): """Calculates the distance between two points on earth. """ lat1, lon1 = latlon1 lat2, lon2 = latlon2 dlon = lon2 - lon1 dlat = lat2 - lat1 R = 6371 # radius of the earth in kilometers a = np.sin(dlat / 2)**2 + np.cos(lat1) * np.cos(lat2) * (np.sin(dlon / 2))**2 c = 2 * np.pi * R * np.arctan2(np.sqrt(a), np.sqrt(1 - a)) / 180 return c
PYTHON
{ "dummy_field": "" }
d109
train
def screen_cv2(self): """cv2 Image of current window screen""" pil_image = self.screen.convert('RGB') cv2_image = np.array(pil_image) pil_image.close() # Convert RGB to BGR cv2_image = cv2_image[:, :, ::-1] return cv2_image
PYTHON
{ "dummy_field": "" }
d110
train
def direct2dDistance(self, point): """consider the distance between two mapPoints, ignoring all terrain, pathing issues""" if not isinstance(point, MapPoint): return 0.0 return ((self.x-point.x)**2 + (self.y-point.y)**2)**(0.5) # simple distance formula
PYTHON
{ "dummy_field": "" }
d111
train
def _model_unique(ins): """ Get unique constraints info :type ins: sqlalchemy.orm.mapper.Mapper :rtype: list[tuple[str]] """ unique = [] for t in ins.tables: for c in t.constraints: if isinstance(c, UniqueConstraint): unique.append(tuple(col.key for col in c.columns)) return unique
PYTHON
{ "dummy_field": "" }
d112
train
def horz_dpi(self): """ Integer dots per inch for the width of this image. Defaults to 72 when not present in the file, as is often the case. """ pHYs = self._chunks.pHYs if pHYs is None: return 72 return self._dpi(pHYs.units_specifier, pHYs.horz_px_per_unit)
PYTHON
{ "dummy_field": "" }
d113
train
def parse(self, s): """ Parses a date string formatted like ``YYYY-MM-DD``. """ return datetime.datetime.strptime(s, self.date_format).date()
PYTHON
{ "dummy_field": "" }
d114
train
def estimate_complexity(self, x,y,z,n): """ calculates a rough guess of runtime based on product of parameters """ num_calculations = x * y * z * n run_time = num_calculations / 100000 # a 2014 PC does about 100k calcs in a second (guess based on prior logs) return self.show_time_as_short_string(run_time)
PYTHON
{ "dummy_field": "" }
d115
train
def weekly(date=datetime.date.today()): """ Weeks start are fixes at Monday for now. """ return date - datetime.timedelta(days=date.weekday())
PYTHON
{ "dummy_field": "" }
d116
train
def inh(table): """ inverse hyperbolic sine transformation """ t = [] for i in table: t.append(np.ndarray.tolist(np.arcsinh(i))) return t
PYTHON
{ "dummy_field": "" }
d117
train
def daterange(start, end, delta=timedelta(days=1), lower=Interval.CLOSED, upper=Interval.OPEN): """Returns a generator which creates the next value in the range on demand""" date_interval = Interval(lower=lower, lower_value=start, upper_value=end, upper=upper) current = start if start in date_interval else start + delta while current in date_interval: yield current current = current + delta
PYTHON
{ "dummy_field": "" }
d118
train
async def _thread_coro(self, *args): """ Coroutine called by MapAsync. It's wrapping the call of run_in_executor to run the synchronous function as thread """ return await self._loop.run_in_executor( self._executor, self._function, *args)
PYTHON
{ "dummy_field": "" }
d119
train
def start_of_month(val): """ Return a new datetime.datetime object with values that represent a start of a month. :param val: Date to ... :type val: datetime.datetime | datetime.date :rtype: datetime.datetime """ if type(val) == date: val = datetime.fromordinal(val.toordinal()) return start_of_day(val).replace(day=1)
PYTHON
{ "dummy_field": "" }
d120
train
def check_output(args, env=None, sp=subprocess): """Call an external binary and return its stdout.""" log.debug('calling %s with env %s', args, env) output = sp.check_output(args=args, env=env) log.debug('output: %r', output) return output
PYTHON
{ "dummy_field": "" }
d121
train
def datetime_to_ms(dt): """ Converts a datetime to a millisecond accuracy timestamp """ seconds = calendar.timegm(dt.utctimetuple()) return seconds * 1000 + int(dt.microsecond / 1000)
PYTHON
{ "dummy_field": "" }
d122
train
def retry_on_signal(function): """Retries function until it doesn't raise an EINTR error""" while True: try: return function() except EnvironmentError, e: if e.errno != errno.EINTR: raise
PYTHON
{ "dummy_field": "" }
d123
train
def datetime_to_timezone(date, tz="UTC"): """ convert naive datetime to timezone-aware datetime """ if not date.tzinfo: date = date.replace(tzinfo=timezone(get_timezone())) return date.astimezone(timezone(tz))
PYTHON
{ "dummy_field": "" }
d124
train
def test(*args): """ Run unit tests. """ subprocess.call(["py.test-2.7"] + list(args)) subprocess.call(["py.test-3.4"] + list(args))
PYTHON
{ "dummy_field": "" }
d125
train
def ToDatetime(self): """Converts Timestamp to datetime.""" return datetime.utcfromtimestamp( self.seconds + self.nanos / float(_NANOS_PER_SECOND))
PYTHON
{ "dummy_field": "" }
d126
train
def sortable_title(instance): """Uses the default Plone sortable_text index lower-case """ title = plone_sortable_title(instance) if safe_callable(title): title = title() return title.lower()
PYTHON
{ "dummy_field": "" }
d127
train
def localize(dt): """Localize a datetime object to local time.""" if dt.tzinfo is UTC: return (dt + LOCAL_UTC_OFFSET).replace(tzinfo=None) # No TZ info so not going to assume anything, return as-is. return dt
PYTHON
{ "dummy_field": "" }
d128
train
def percent_cb(name, complete, total): """ Callback for updating target progress """ logger.debug( "{}: {} transferred out of {}".format( name, sizeof_fmt(complete), sizeof_fmt(total) ) ) progress.update_target(name, complete, total)
PYTHON
{ "dummy_field": "" }
d129
train
def now(self): """ Return a :py:class:`datetime.datetime` instance representing the current time. :rtype: :py:class:`datetime.datetime` """ if self.use_utc: return datetime.datetime.utcnow() else: return datetime.datetime.now()
PYTHON
{ "dummy_field": "" }
d130
train
def to_pascal_case(s): """Transform underscore separated string to pascal case """ return re.sub(r'(?!^)_([a-zA-Z])', lambda m: m.group(1).upper(), s.capitalize())
PYTHON
{ "dummy_field": "" }
d131
train
def now(self): """ Return a :py:class:`datetime.datetime` instance representing the current time. :rtype: :py:class:`datetime.datetime` """ if self.use_utc: return datetime.datetime.utcnow() else: return datetime.datetime.now()
PYTHON
{ "dummy_field": "" }
d132
train
def _convert_date_to_dict(field_date): """ Convert native python ``datetime.date`` object to a format supported by the API """ return {DAY: field_date.day, MONTH: field_date.month, YEAR: field_date.year}
PYTHON
{ "dummy_field": "" }
d133
train
def ToDatetime(self): """Converts Timestamp to datetime.""" return datetime.utcfromtimestamp( self.seconds + self.nanos / float(_NANOS_PER_SECOND))
PYTHON
{ "dummy_field": "" }
d134
train
def convert_array(array): """ Converts an ARRAY string stored in the database back into a Numpy array. Parameters ---------- array: ARRAY The array object to be converted back into a Numpy array. Returns ------- array The converted Numpy array. """ out = io.BytesIO(array) out.seek(0) return np.load(out)
PYTHON
{ "dummy_field": "" }
d135
train
def parse_timestamp(timestamp): """Parse ISO8601 timestamps given by github API.""" dt = dateutil.parser.parse(timestamp) return dt.astimezone(dateutil.tz.tzutc())
PYTHON
{ "dummy_field": "" }
d136
train
def add_to_js(self, name, var): """Add an object to Javascript.""" frame = self.page().mainFrame() frame.addToJavaScriptWindowObject(name, var)
PYTHON
{ "dummy_field": "" }
d137
train
def fromtimestamp(cls, timestamp): """Returns a datetime object of a given timestamp (in local tz).""" d = cls.utcfromtimestamp(timestamp) return d.astimezone(localtz())
PYTHON
{ "dummy_field": "" }
d138
train
def print_latex(o): """A function to generate the latex representation of sympy expressions.""" if can_print_latex(o): s = latex(o, mode='plain') s = s.replace('\\dag','\\dagger') s = s.strip('$') return '$$%s$$' % s # Fallback to the string printer return None
PYTHON
{ "dummy_field": "" }
d139
train
def datetime64_to_datetime(dt): """ convert numpy's datetime64 to datetime """ dt64 = np.datetime64(dt) ts = (dt64 - np.datetime64('1970-01-01T00:00:00')) / np.timedelta64(1, 's') return datetime.datetime.utcfromtimestamp(ts)
PYTHON
{ "dummy_field": "" }
d140
train
def batch_tensor(self, name): """ A buffer of a given value in a 'flat' (minibatch-indexed) format """ if name in self.transition_tensors: return tensor_util.merge_first_two_dims(self.transition_tensors[name]) else: return self.rollout_tensors[name]
PYTHON
{ "dummy_field": "" }
d141
train
def isInteractive(): """ A basic check of if the program is running in interactive mode """ if sys.stdout.isatty() and os.name != 'nt': #Hopefully everything but ms supports '\r' try: import threading except ImportError: return False else: return True else: return False
PYTHON
{ "dummy_field": "" }
d142
train
def create_symlink(source, link_name): """ Creates symbolic link for either operating system. http://stackoverflow.com/questions/6260149/os-symlink-support-in-windows """ os_symlink = getattr(os, "symlink", None) if isinstance(os_symlink, collections.Callable): os_symlink(source, link_name) else: import ctypes csl = ctypes.windll.kernel32.CreateSymbolicLinkW csl.argtypes = (ctypes.c_wchar_p, ctypes.c_wchar_p, ctypes.c_uint32) csl.restype = ctypes.c_ubyte flags = 1 if os.path.isdir(source) else 0 if csl(link_name, source, flags) == 0: raise ctypes.WinError()
PYTHON
{ "dummy_field": "" }
d143
train
def export(defn): """Decorator to explicitly mark functions that are exposed in a lib.""" globals()[defn.__name__] = defn __all__.append(defn.__name__) return defn
PYTHON
{ "dummy_field": "" }
d144
train
def parse(source, remove_comments=True, **kw): """Thin wrapper around ElementTree.parse""" return ElementTree.parse(source, SourceLineParser(), **kw)
PYTHON
{ "dummy_field": "" }
d145
train
def decorator(func): r"""Makes the passed decorators to support optional args. """ def wrapper(__decorated__=None, *Args, **KwArgs): if __decorated__ is None: # the decorator has some optional arguments. return lambda _func: func(_func, *Args, **KwArgs) else: return func(__decorated__, *Args, **KwArgs) return wrap(wrapper, func)
PYTHON
{ "dummy_field": "" }
d146
train
def show_image(self, key): """Show image (item is a PIL image)""" data = self.model.get_data() data[key].show()
PYTHON
{ "dummy_field": "" }
d147
train
def get_default_args(func): """ returns a dictionary of arg_name:default_values for the input function """ args, varargs, keywords, defaults = getargspec_no_self(func) return dict(zip(args[-len(defaults):], defaults))
PYTHON
{ "dummy_field": "" }
d148
train
def _interval_to_bound_points(array): """ Helper function which returns an array with the Intervals' boundaries. """ array_boundaries = np.array([x.left for x in array]) array_boundaries = np.concatenate( (array_boundaries, np.array([array[-1].right]))) return array_boundaries
PYTHON
{ "dummy_field": "" }
d149
train
def closing_plugin(self, cancelable=False): """Perform actions before parent main window is closed""" self.dialog_manager.close_all() self.shell.exit_interpreter() return True
PYTHON
{ "dummy_field": "" }
d150
train
def test(): """Local test.""" from spyder.utils.qthelpers import qapplication app = qapplication() dlg = ProjectDialog(None) dlg.show() sys.exit(app.exec_())
PYTHON
{ "dummy_field": "" }
d151
train
def del_label(self, name): """Delete a label by name.""" labels_tag = self.root[0] labels_tag.remove(self._find_label(name))
PYTHON
{ "dummy_field": "" }
d152
train
def mixedcase(path): """Removes underscores and capitalizes the neighbouring character""" words = path.split('_') return words[0] + ''.join(word.title() for word in words[1:])
PYTHON
{ "dummy_field": "" }
d153
train
def delete_all_eggs(self): """ delete all the eggs in the directory specified """ path_to_delete = os.path.join(self.egg_directory, "lib", "python") if os.path.exists(path_to_delete): shutil.rmtree(path_to_delete)
PYTHON
{ "dummy_field": "" }
d154
train
def get_system_cpu_times(): """Return system CPU times as a namedtuple.""" user, nice, system, idle = _psutil_osx.get_system_cpu_times() return _cputimes_ntuple(user, nice, system, idle)
PYTHON
{ "dummy_field": "" }
d155
train
def remove(self, document_id, namespace, timestamp): """Removes documents from Solr The input is a python dictionary that represents a mongo document. """ self.solr.delete(id=u(document_id), commit=(self.auto_commit_interval == 0))
PYTHON
{ "dummy_field": "" }
d156
train
def update_hash_from_str(hsh, str_input): """ Convert a str to object supporting buffer API and update a hash with it. """ byte_input = str(str_input).encode("UTF-8") hsh.update(byte_input)
PYTHON
{ "dummy_field": "" }
d157
train
def make_regex(separator): """Utility function to create regexp for matching escaped separators in strings. """ return re.compile(r'(?:' + re.escape(separator) + r')?((?:[^' + re.escape(separator) + r'\\]|\\.)+)')
PYTHON
{ "dummy_field": "" }
d158
train
def dictify(a_named_tuple): """Transform a named tuple into a dictionary""" return dict((s, getattr(a_named_tuple, s)) for s in a_named_tuple._fields)
PYTHON
{ "dummy_field": "" }
d159
train
def _py2_and_3_joiner(sep, joinable): """ Allow '\n'.join(...) statements to work in Py2 and Py3. :param sep: :param joinable: :return: """ if ISPY3: sep = bytes(sep, DEFAULT_ENCODING) joined = sep.join(joinable) return joined.decode(DEFAULT_ENCODING) if ISPY3 else joined
PYTHON
{ "dummy_field": "" }
d160
train
def c_str(string): """"Convert a python string to C string.""" if not isinstance(string, str): string = string.decode('ascii') return ctypes.c_char_p(string.encode('utf-8'))
PYTHON
{ "dummy_field": "" }
d161
train
def endline_semicolon_check(self, original, loc, tokens): """Check for semicolons at the end of lines.""" return self.check_strict("semicolon at end of line", original, loc, tokens)
PYTHON
{ "dummy_field": "" }
d162
train
def _datetime_to_date(arg): """ convert datetime/str to date :param arg: :return: """ _arg = parse(arg) if isinstance(_arg, datetime.datetime): _arg = _arg.date() return _arg
PYTHON
{ "dummy_field": "" }
d163
train
def get(self): """Get the highest priority Processing Block from the queue.""" with self._mutex: entry = self._queue.pop() del self._block_map[entry[2]] return entry[2]
PYTHON
{ "dummy_field": "" }
d164
train
def center_text(text, width=80): """Center all lines of the text. It is assumed that all lines width is smaller then B{width}, because the line width will not be checked. Args: text (str): Text to wrap. width (int): Maximum number of characters per line. Returns: str: Centered text. """ centered = [] for line in text.splitlines(): centered.append(line.center(width)) return "\n".join(centered)
PYTHON
{ "dummy_field": "" }
d165
train
def from_json(cls, json_str): """Deserialize the object from a JSON string.""" d = json.loads(json_str) return cls.from_dict(d)
PYTHON
{ "dummy_field": "" }
d166
train
def update(kernel=False): """ Upgrade all packages, skip obsoletes if ``obsoletes=0`` in ``yum.conf``. Exclude *kernel* upgrades by default. """ manager = MANAGER cmds = {'yum -y --color=never': {False: '--exclude=kernel* update', True: 'update'}} cmd = cmds[manager][kernel] run_as_root("%(manager)s %(cmd)s" % locals())
PYTHON
{ "dummy_field": "" }
d167
train
def guess_encoding(text, default=DEFAULT_ENCODING): """Guess string encoding. Given a piece of text, apply character encoding detection to guess the appropriate encoding of the text. """ result = chardet.detect(text) return normalize_result(result, default=default)
PYTHON
{ "dummy_field": "" }
d168
train
def commajoin_as_strings(iterable): """ Join the given iterable with ',' """ return _(u',').join((six.text_type(i) for i in iterable))
PYTHON
{ "dummy_field": "" }
d169
train
def supports_color(): """ Returns True if the running system's terminal supports color, and False otherwise. """ unsupported_platform = (sys.platform in ('win32', 'Pocket PC')) # isatty is not always implemented, #6223. is_a_tty = hasattr(sys.stdout, 'isatty') and sys.stdout.isatty() if unsupported_platform or not is_a_tty: return False return True
PYTHON
{ "dummy_field": "" }
d170
train
def seconds_to_hms(seconds): """ Converts seconds float to 'hh:mm:ss.ssssss' format. """ hours = int(seconds / 3600.0) minutes = int((seconds / 60.0) % 60.0) secs = float(seconds % 60.0) return "{0:02d}:{1:02d}:{2:02.6f}".format(hours, minutes, secs)
PYTHON
{ "dummy_field": "" }
d171
train
def __contains__(self, key): """ Invoked when determining whether a specific key is in the dictionary using `key in d`. The key is looked up case-insensitively. """ k = self._real_key(key) return k in self._data
PYTHON
{ "dummy_field": "" }
d172
train
def get_truetype(value): """Convert a string to a pythonized parameter.""" if value in ["true", "True", "y", "Y", "yes"]: return True if value in ["false", "False", "n", "N", "no"]: return False if value.isdigit(): return int(value) return str(value)
PYTHON
{ "dummy_field": "" }
d173
train
def Serializable(o): """Make sure an object is JSON-serializable Use this to return errors and other info that does not need to be deserialized or does not contain important app data. Best for returning error info and such""" if isinstance(o, (str, dict, int)): return o else: try: json.dumps(o) return o except Exception: LOG.debug("Got a non-serilizeable object: %s" % o) return o.__repr__()
PYTHON
{ "dummy_field": "" }
d174
train
def timed_rotating_file_handler(name, logname, filename, when='h', interval=1, backupCount=0, encoding=None, delay=False, utc=False): """ A Bark logging handler logging output to a named file. At intervals specified by the 'when', the file will be rotated, under control of 'backupCount'. Similar to logging.handlers.TimedRotatingFileHandler. """ return wrap_log_handler(logging.handlers.TimedRotatingFileHandler( filename, when=when, interval=interval, backupCount=backupCount, encoding=encoding, delay=delay, utc=utc))
PYTHON
{ "dummy_field": "" }
d175
train
def is_identifier(string): """Check if string could be a valid python identifier :param string: string to be tested :returns: True if string can be a python identifier, False otherwise :rtype: bool """ matched = PYTHON_IDENTIFIER_RE.match(string) return bool(matched) and not keyword.iskeyword(string)
PYTHON
{ "dummy_field": "" }
d176
train
def uniform_iterator(sequence): """Uniform (key, value) iteration on a `dict`, or (idx, value) on a `list`.""" if isinstance(sequence, abc.Mapping): return six.iteritems(sequence) else: return enumerate(sequence)
PYTHON
{ "dummy_field": "" }
d177
train
def _guess_type(val): """Guess the input type of the parameter based off the default value, if unknown use text""" if isinstance(val, bool): return "choice" elif isinstance(val, int): return "number" elif isinstance(val, float): return "number" elif isinstance(val, str): return "text" elif hasattr(val, 'read'): return "file" else: return "text"
PYTHON
{ "dummy_field": "" }
d178
train
def _to_corrected_pandas_type(dt): """ When converting Spark SQL records to Pandas DataFrame, the inferred data type may be wrong. This method gets the corrected data type for Pandas if that type may be inferred uncorrectly. """ import numpy as np if type(dt) == ByteType: return np.int8 elif type(dt) == ShortType: return np.int16 elif type(dt) == IntegerType: return np.int32 elif type(dt) == FloatType: return np.float32 else: return None
PYTHON
{ "dummy_field": "" }
d179
train
def _platform_is_windows(platform=sys.platform): """Is the current OS a Windows?""" matched = platform in ('cygwin', 'win32', 'win64') if matched: error_msg = "Windows isn't supported yet" raise OSError(error_msg) return matched
PYTHON
{ "dummy_field": "" }
d180
train
def _xls2col_widths(self, worksheet, tab): """Updates col_widths in code_array""" for col in xrange(worksheet.ncols): try: xls_width = worksheet.colinfo_map[col].width pys_width = self.xls_width2pys_width(xls_width) self.code_array.col_widths[col, tab] = pys_width except KeyError: pass
PYTHON
{ "dummy_field": "" }
d181
train
def keys_to_snake_case(camel_case_dict): """ Make a copy of a dictionary with all keys converted to snake case. This is just calls to_snake_case on each of the keys in the dictionary and returns a new dictionary. :param camel_case_dict: Dictionary with the keys to convert. :type camel_case_dict: Dictionary. :return: Dictionary with the keys converted to snake case. """ return dict((to_snake_case(key), value) for (key, value) in camel_case_dict.items())
PYTHON
{ "dummy_field": "" }
d182
train
def _bytes_to_json(value): """Coerce 'value' to an JSON-compatible representation.""" if isinstance(value, bytes): value = base64.standard_b64encode(value).decode("ascii") return value
PYTHON
{ "dummy_field": "" }
d183
train
def dict_hash(dct): """Return a hash of the contents of a dictionary""" dct_s = json.dumps(dct, sort_keys=True) try: m = md5(dct_s) except TypeError: m = md5(dct_s.encode()) return m.hexdigest()
PYTHON
{ "dummy_field": "" }
d184
train
def int_to_date(date): """ Convert an int of form yyyymmdd to a python date object. """ year = date // 10**4 month = date % 10**4 // 10**2 day = date % 10**2 return datetime.date(year, month, day)
PYTHON
{ "dummy_field": "" }
d185
train
def filter_dict(d, keys): """ Creates a new dict from an existing dict that only has the given keys """ return {k: v for k, v in d.items() if k in keys}
PYTHON
{ "dummy_field": "" }
d186
train
def hasattrs(object, *names): """ Takes in an object and a variable length amount of named attributes, and checks to see if the object has each property. If any of the attributes are missing, this returns false. :param object: an object that may or may not contain the listed attributes :param names: a variable amount of attribute names to check for :return: True if the object contains each named attribute, false otherwise """ for name in names: if not hasattr(object, name): return False return True
PYTHON
{ "dummy_field": "" }
d187
train
def dict_update_newkeys(dict_, dict2): """ Like dict.update, but does not overwrite items """ for key, val in six.iteritems(dict2): if key not in dict_: dict_[key] = val
PYTHON
{ "dummy_field": "" }
d188
train
def numpy_aware_eq(a, b): """Return whether two objects are equal via recursion, using :func:`numpy.array_equal` for comparing numpy arays. """ if isinstance(a, np.ndarray) or isinstance(b, np.ndarray): return np.array_equal(a, b) if ((isinstance(a, Iterable) and isinstance(b, Iterable)) and not isinstance(a, str) and not isinstance(b, str)): if len(a) != len(b): return False return all(numpy_aware_eq(x, y) for x, y in zip(a, b)) return a == b
PYTHON
{ "dummy_field": "" }
d189
train
def update(self, other_dict): """update() extends rather than replaces existing key lists.""" for key, value in iter_multi_items(other_dict): MultiDict.add(self, key, value)
PYTHON
{ "dummy_field": "" }
d190
train
def _internet_on(address): """ Check to see if the internet is on by pinging a set address. :param address: the IP or address to hit :return: a boolean - true if can be reached, false if not. """ try: urllib2.urlopen(address, timeout=1) return True except urllib2.URLError as err: return False
PYTHON
{ "dummy_field": "" }
d191
train
def _defaultdict(dct, fallback=_illegal_character): """Wraps the given dictionary such that the given fallback function will be called when a nonexistent key is accessed. """ out = defaultdict(lambda: fallback) for k, v in six.iteritems(dct): out[k] = v return out
PYTHON
{ "dummy_field": "" }
d192
train
def is_json_file(filename, show_warnings = False): """Check configuration file type is JSON Return a boolean indicating wheather the file is JSON format or not """ try: config_dict = load_config(filename, file_type = "json") is_json = True except: is_json = False return(is_json)
PYTHON
{ "dummy_field": "" }
d193
train
def _remove_dict_keys_with_value(dict_, val): """Removes `dict` keys which have have `self` as value.""" return {k: v for k, v in dict_.items() if v is not val}
PYTHON
{ "dummy_field": "" }
d194
train
def post_commit_hook(argv): """Hook: for checking commit message.""" _, stdout, _ = run("git log -1 --format=%B HEAD") message = "\n".join(stdout) options = {"allow_empty": True} if not _check_message(message, options): click.echo( "Commit message errors (fix with 'git commit --amend').", file=sys.stderr) return 1 # it should not fail with exit return 0
PYTHON
{ "dummy_field": "" }
d195
train
def setdefaults(dct, defaults): """Given a target dct and a dict of {key:default value} pairs, calls setdefault for all of those pairs.""" for key in defaults: dct.setdefault(key, defaults[key]) return dct
PYTHON
{ "dummy_field": "" }
d196
train
def is_image_file_valid(file_path_name): """ Indicate whether the specified image file is valid or not. @param file_path_name: absolute path and file name of an image. @return: ``True`` if the image file is valid, ``False`` if the file is truncated or does not correspond to a supported image. """ # Image.verify is only implemented for PNG images, and it only verifies # the CRC checksum in the image. The only way to check from within # Pillow is to load the image in a try/except and check the error. If # as much info as possible is from the image is needed, # ``ImageFile.LOAD_TRUNCATED_IMAGES=True`` needs to bet set and it # will attempt to parse as much as possible. try: with Image.open(file_path_name) as image: image.load() except IOError: return False return True
PYTHON
{ "dummy_field": "" }
d197
train
def dict_to_html_attrs(dict_): """ Banana banana """ res = ' '.join('%s="%s"' % (k, v) for k, v in dict_.items()) return res
PYTHON
{ "dummy_field": "" }
d198
train
def is_binary(filename): """ Returns True if the file is binary """ with open(filename, 'rb') as fp: data = fp.read(1024) if not data: return False if b'\0' in data: return True return False
PYTHON
{ "dummy_field": "" }
d199
train
def dict_to_querystring(dictionary): """Converts a dict to a querystring suitable to be appended to a URL.""" s = u"" for d in dictionary.keys(): s = unicode.format(u"{0}{1}={2}&", s, d, dictionary[d]) return s[:-1]
PYTHON
{ "dummy_field": "" }
d200
train
def _check_elements_equal(lst): """ Returns true if all of the elements in the list are equal. """ assert isinstance(lst, list), "Input value must be a list." return not lst or lst.count(lst[0]) == len(lst)
PYTHON
{ "dummy_field": "" }