--- dataset_info: - config_name: corpus features: - name: _id dtype: string - name: partition dtype: string - name: text dtype: string - name: language dtype: string - name: meta_information struct: - name: starter_code dtype: string - name: url dtype: string - name: title dtype: string splits: - name: corpus num_bytes: 6044437 num_examples: 8765 download_size: 2699470 dataset_size: 6044437 - config_name: default features: - name: query-id dtype: string - name: corpus-id dtype: string - name: score dtype: int64 splits: - name: train num_bytes: 127786 num_examples: 5000 - name: test num_bytes: 97890 num_examples: 3765 download_size: 101288 dataset_size: 225676 - config_name: queries features: - name: _id dtype: string - name: partition dtype: string - name: text dtype: string - name: language dtype: string - name: meta_information struct: - name: starter_code dtype: string - name: url dtype: string - name: title dtype: string splits: - name: queries num_bytes: 13633677 num_examples: 8765 download_size: 6605803 dataset_size: 13633677 configs: - config_name: corpus data_files: - split: corpus path: corpus/corpus-* - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* - config_name: queries data_files: - split: queries path: queries/queries-* --- Employing the MTEB evaluation framework's dataset version, utilize the code below for assessment: ```python import mteb import logging from sentence_transformers import SentenceTransformer from mteb import MTEB logger = logging.getLogger(__name__) model_name = 'intfloat/e5-base-v2' model = SentenceTransformer(model_name) tasks = mteb.get_tasks( tasks=[ "AppsRetrieval", "CodeFeedbackMT", "CodeFeedbackST", "CodeTransOceanContest", "CodeTransOceanDL", "CosQA", "SyntheticText2SQL", "StackOverflowQA", "COIRCodeSearchNetRetrieval", "CodeSearchNetCCRetrieval", ] ) evaluation = MTEB(tasks=tasks) results = evaluation.run( model=model, overwrite_results=True ) print(result) ```