Update README.md
Browse files
README.md
CHANGED
@@ -1,5 +1,13 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
4 |
# 1. About Dataset
|
5 |
**LaDe** is a publicly available last-mile delivery dataset with millions of packages from industry.
|
@@ -13,7 +21,7 @@ If you use this dataset for your research, please cite this paper: {xxx}
|
|
13 |
LaDe is composed of two subdatasets: i) [LaDe-D](https://huggingface.co/datasets/Cainiao-AI/LaDe-D), which comes from the package delivery scenario.
|
14 |
ii) [LaDe-P](https://huggingface.co/datasets/Cainiao-AI/LaDe-P), which comes from the package pickup scenario. To facilitate the utilization of the dataset, each sub-dataset is presented in CSV format.
|
15 |
|
16 |
-
LaDe can be used for research purposes. Before you download the dataset, please read these terms. And [Code link](
|
17 |
The structure of "/data/raw/" should be like:
|
18 |
```
|
19 |
* /data/raw/
|
@@ -25,10 +33,20 @@ The structure of "/data/raw/" should be like:
|
|
25 |
* ...
|
26 |
```
|
27 |
|
28 |
-
Each sub-dataset contains 5 csv files, with each representing the data from a specific city.
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
# 3. Description
|
|
|
32 |
## 3.1 LaDe-P
|
33 |
| Data field | Description | Unit/format |
|
34 |
|----------------------------|----------------------------------------------|--------------|
|
@@ -80,41 +98,46 @@ Below is the detailed field of each sub-dataset.
|
|
80 |
|
81 |
|
82 |
# 4. Leaderboard
|
|
|
83 |
## 4.1 Route Prediction
|
84 |
-
| Method | HR@3 | KRC | LSD | ED |
|
85 |
-
|--------------|----------------|----------------|----------------|----------------|
|
86 |
-
| TimeGreedy | 59.38 | 39.65 | 5.30 | 2.26 |
|
87 |
-
| DistanceGreedy | 60.81 | 42.78 | 5.46 | 1.95 |
|
88 |
-
| OR-Tools | 62.23 | 44.87 | 4.77 | 1.90 |
|
89 |
-
| LightGBM | 70.33 | 54.44 | 3.36 | 1.94 |
|
90 |
-
| FDNET | 68.55 ± 0.10 | 51.99 ± 0.12 | 4.28 ± 0.02 | 1.89 ± 0.01 |
|
91 |
-
| DeepRoute | 71.57 ± 0.07 | 56.33 ± 0.13 | 3.31 ± 0.06 | 1.86 ± 0.01 |
|
92 |
-
| Graph2Route | 71.41 ± 0.04 | 56.46 ± 0.02 | 3.18 ± 0.01 | 1.88 ± 0.01 |
|
93 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
|
96 |
## 4.2 Estimated Time of Arrival Prediction
|
97 |
-
| Model | MAE | RMSE | ACC@30 |
|
98 |
-
|----------|-------|-------|--------|
|
99 |
-
| LightGBM | 30.99 | 35.04 | 0.59 |
|
100 |
-
| SPEED | 23.75 | 27.86 | 0.73 |
|
101 |
-
| KNN | 36.00 | 31.89 | 0.58 |
|
102 |
-
| MLP | 21.54 ± 2.2 | 25.05 ± 2.46 | 0.79 ± 0.04 |
|
103 |
-
| FDNET | **18.47 ± 0.25** | **21.44 ± 0.28** | **0.84 ± 0.01** |
|
104 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
|
106 |
|
107 |
## 4.3 Spatio-temporal Graph Forecasting
|
108 |
-
|
109 |
-
|
110 |
-
|
|
111 |
-
|
112 |
-
|
|
113 |
-
|
|
114 |
-
|
|
115 |
-
|
|
116 |
-
|
|
117 |
-
|
|
|
|
|
|
118 |
|
119 |
|
120 |
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
+
task_categories:
|
4 |
+
- time-series-forecasting
|
5 |
+
tags:
|
6 |
+
- Spatial-Temporal
|
7 |
+
- Graph
|
8 |
+
- Logistic
|
9 |
+
size_categories:
|
10 |
+
- 10M<n<100M
|
11 |
---
|
12 |
# 1. About Dataset
|
13 |
**LaDe** is a publicly available last-mile delivery dataset with millions of packages from industry.
|
|
|
21 |
LaDe is composed of two subdatasets: i) [LaDe-D](https://huggingface.co/datasets/Cainiao-AI/LaDe-D), which comes from the package delivery scenario.
|
22 |
ii) [LaDe-P](https://huggingface.co/datasets/Cainiao-AI/LaDe-P), which comes from the package pickup scenario. To facilitate the utilization of the dataset, each sub-dataset is presented in CSV format.
|
23 |
|
24 |
+
LaDe can be used for research purposes. Before you download the dataset, please read these terms. And [Code link](https://github.com/wenhaomin/LaDe). Then put the data into "/data/raw/".
|
25 |
The structure of "/data/raw/" should be like:
|
26 |
```
|
27 |
* /data/raw/
|
|
|
33 |
* ...
|
34 |
```
|
35 |
|
36 |
+
Each sub-dataset contains 5 csv files, with each representing the data from a specific city, the detail of each city can be find in the following table.
|
37 |
+
|
38 |
+
|
39 |
+
| City | Description |
|
40 |
+
|------------|----------------------------------------------------------------------------------------------|
|
41 |
+
| Shanghai | One of the most prosperous cities in China, with a large number of orders per day. |
|
42 |
+
| Hangzhou | A big city with well-developed online e-commerce and a large number of orders per day. |
|
43 |
+
| Chongqing | A big city with complicated road conditions in China, with a large number of orders. |
|
44 |
+
| Jilin | A middle-size city in China, with a small number of orders each day. |
|
45 |
+
| Yantai | A small city in China, with a small number of orders every day. |
|
46 |
+
|
47 |
|
48 |
# 3. Description
|
49 |
+
Below is the detailed field of each sub-dataset.
|
50 |
## 3.1 LaDe-P
|
51 |
| Data field | Description | Unit/format |
|
52 |
|----------------------------|----------------------------------------------|--------------|
|
|
|
98 |
|
99 |
|
100 |
# 4. Leaderboard
|
101 |
+
Blow shows the performance of different methods in Shanghai.
|
102 |
## 4.1 Route Prediction
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
+
Experimental results of route prediction. We use bold and underlined fonts to denote the best and runner-up model, respectively.
|
105 |
+
|
106 |
+
| Method | HR@3 | KRC | LSD | ED |
|
107 |
+
|--------------|--------------|--------------|-------------|-------------|
|
108 |
+
| TimeGreedy | 57.65 | 31.81 | 5.54 | 2.15 |
|
109 |
+
| DistanceGreedy | 60.77 | 39.81 | 5.54 | 2.15 |
|
110 |
+
| OR-Tools | 66.21 | 47.60 | 4.40 | 1.81 |
|
111 |
+
| LightGBM | 73.76 | 55.71 | 3.01 | 1.84 |
|
112 |
+
| FDNET | 73.27 ± 0.47 | 53.80 ± 0.58 | 3.30 ± 0.04 | 1.84 ± 0.01 |
|
113 |
+
| DeepRoute | 74.68 ± 0.07 | 56.60 ± 0.16 | 2.98 ± 0.01 | 1.79 ± 0.01 |
|
114 |
+
| Graph2Route | 74.84 ± 0.15 | 56.99 ± 0.52 | 2.86 ± 0.02 | 1.77 ± 0.01 |
|
115 |
|
116 |
|
117 |
## 4.2 Estimated Time of Arrival Prediction
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
+
| Method | MAE | RMSE | ACC@30 |
|
120 |
+
| ------ |--------------|--------------|-------------|
|
121 |
+
| LightGBM | 30.99 | 35.04 | 0.59 |
|
122 |
+
| SPEED | 23.75 | 27.86 | 0.73 |
|
123 |
+
| KNN | 36.00 | 31.89 | 0.58 |
|
124 |
+
| MLP | 21.54 ± 2.20 | 25.05 ± 2.46 | 0.79 �� 0.04 |
|
125 |
+
| FDNET | 18.47 ± 0.25 | 21.44 ± 0.28 | 0.84 ± 0.01 |
|
126 |
|
127 |
|
128 |
## 4.3 Spatio-temporal Graph Forecasting
|
129 |
+
|
130 |
+
|
131 |
+
| Method | MAE | RMSE |
|
132 |
+
|-------|-------------|-------------|
|
133 |
+
| HA | 4.63 | 9.91 |
|
134 |
+
| DCRNN | 3.69 ± 0.09 | 7.08 ± 0.12 |
|
135 |
+
| STGCN | 3.04 ± 0.02 | 6.42 ± 0.05 |
|
136 |
+
| GWNET | 3.16 ± 0.06 | 6.56 ± 0.11 |
|
137 |
+
| ASTGCN | 3.12 ± 0.06 | 6.48 ± 0.14 |
|
138 |
+
| MTGNN | 3.13 ± 0.04 | 6.51 ± 0.13 |
|
139 |
+
| AGCRN | 3.93 ± 0.03 | 7.99 ± 0.08 |
|
140 |
+
| STGNCDE | 3.74 ± 0.15 | 7.27 ± 0.16 |
|
141 |
|
142 |
|
143 |
|