Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,132 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
---
|
4 |
+
# 1 About Dataset
|
5 |
+
**LaDe** is a publicly available last-mile delivery dataset with millions of packages from industry.
|
6 |
+
It has three unique characteristics: (1) Large-scale. It involves 10,677k packages of 21k couriers over 6 months of real-world operation.
|
7 |
+
(2) Comprehensive information, it offers original package information, such as its location and time requirements, as well as task-event information, which records when and where the courier is while events such as task-accept and task-finish events happen.
|
8 |
+
(3) Diversity: the dataset includes data from various scenarios, such as package pick-up and delivery, and from multiple cities, each with its unique spatio-temporal patterns due to their distinct characteristics such as populations.
|
9 |
+
|
10 |
+
If you use this dataset for your research, please cite this paper: {xxx}
|
11 |
+
|
12 |
+
# 2 Download
|
13 |
+
LaDe is composed of two subdatasets: i) [LaDe-D](https://huggingface.co/datasets/Cainiao-AI/LaDe-D), which comes from the package delivery scenario.
|
14 |
+
ii) [LaDe-P](https://huggingface.co/datasets/Cainiao-AI/LaDe-P), which comes from the package pickup scenario. To facilitate the utilization of the dataset, each sub-dataset is presented in CSV format.
|
15 |
+
|
16 |
+
LaDe can be used for research purposes. Before you download the dataset, please read these terms. And [Code link](xxx). Then put the data into "/data/raw/".
|
17 |
+
The structure of "/data/raw/" should be like:
|
18 |
+
```
|
19 |
+
* /data/raw/
|
20 |
+
* delivery
|
21 |
+
* delivery_sh.csv
|
22 |
+
* ...
|
23 |
+
* pickup
|
24 |
+
* pickup_sh.csv
|
25 |
+
* ...
|
26 |
+
```
|
27 |
+
|
28 |
+
Each sub-dataset contains 5 csv files, with each representing the data from a specific city.
|
29 |
+
Below is the detailed field of each sub-dataset.
|
30 |
+
|
31 |
+
# 3 Description
|
32 |
+
## 3.1 LaDe-P
|
33 |
+
| Data field | Description | Unit/format |
|
34 |
+
|----------------------------|----------------------------------------------|--------------|
|
35 |
+
| **Package information** | | |
|
36 |
+
| package_id | Unique identifier of each package | Id |
|
37 |
+
| time_window_start | Start of the required time window | Time |
|
38 |
+
| time_window_end | End of the required time window | Time |
|
39 |
+
| **Stop information** | | |
|
40 |
+
| lng/lat | Coordinates of each stop | Float |
|
41 |
+
| city | City | String |
|
42 |
+
| region_id | Id of the Region | String |
|
43 |
+
| aoi_id | Id of the AOI (Area of Interest) | Id |
|
44 |
+
| aoi_type | Type of the AOI | Categorical |
|
45 |
+
| **Courier Information** | | |
|
46 |
+
| courier_id | Id of the courier | Id |
|
47 |
+
| **Task-event Information** | | |
|
48 |
+
| accept_time | The time when the courier accepts the task | Time |
|
49 |
+
| accept_gps_time | The time of the GPS point closest to accept time | Time |
|
50 |
+
| accept_gps_lng/lat | Coordinates when the courier accepts the task | Float |
|
51 |
+
| pickup_time | The time when the courier picks up the task | Time |
|
52 |
+
| pickup_gps_time | The time of the GPS point closest to pickup_time | Time |
|
53 |
+
| pickup_gps_lng/lat | Coordinates when the courier picks up the task | Float |
|
54 |
+
| **Context information** | | |
|
55 |
+
| ds | The date of the package pickup | Date |
|
56 |
+
|
57 |
+
|
58 |
+
## 3.2 LaDe-D
|
59 |
+
| Data field | Description | Unit/format |
|
60 |
+
|-----------------------|--------------------------------------|---------------|
|
61 |
+
| **Package information** | | |
|
62 |
+
| package_id | Unique identifier of each package | Id |
|
63 |
+
| **Stop information** | | |
|
64 |
+
| lng/lat | Coordinates of each stop | Float |
|
65 |
+
| city | City | String |
|
66 |
+
| region_id | Id of the region | Id |
|
67 |
+
| aoi_id | Id of the AOI | Id |
|
68 |
+
| aoi_type | Type of the AOI | Categorical |
|
69 |
+
| **Courier Information** | | |
|
70 |
+
| courier_id | Id of the courier | Id |
|
71 |
+
| **Task-event Information**| | |
|
72 |
+
| accept_time | The time when the courier accepts the task | Time |
|
73 |
+
| accept_gps_time | The time of the GPS point whose time is the closest to accept time | Time |
|
74 |
+
| accept_gps_lng/accept_gps_lat | Coordinates when the courier accepts the task | Float |
|
75 |
+
| delivery_time | The time when the courier finishes delivering the task | Time |
|
76 |
+
| delivery_gps_time | The time of the GPS point whose time is the closest to the delivery time | Time |
|
77 |
+
| delivery_gps_lng/delivery_gps_lat | Coordinates when the courier finishes the task | Float |
|
78 |
+
| **Context information** | | |
|
79 |
+
| ds | The date of the package delivery | Date |
|
80 |
+
|
81 |
+
|
82 |
+
# 4 Leaderboard
|
83 |
+
## 4.1 Route Prediction
|
84 |
+
| Method | HR@3 | KRC | LSD | ED |
|
85 |
+
|--------------|----------------|----------------|----------------|----------------|
|
86 |
+
| TimeGreedy | 59.38 | 39.65 | 5.30 | 2.26 |
|
87 |
+
| DistanceGreedy | 60.81 | 42.78 | 5.46 | 1.95 |
|
88 |
+
| OR-Tools | 62.23 | 44.87 | 4.77 | 1.90 |
|
89 |
+
| LightGBM | 70.33 | 54.44 | 3.36 | 1.94 |
|
90 |
+
| FDNET | 68.55 ± 0.10 | 51.99 ± 0.12 | 4.28 ± 0.02 | 1.89 ± 0.01 |
|
91 |
+
| DeepRoute | 71.57 ± 0.07 | 56.33 ± 0.13 | 3.31 ± 0.06 | 1.86 ± 0.01 |
|
92 |
+
| Graph2Route | 71.41 ± 0.04 | 56.46 ± 0.02 | 3.18 ± 0.01 | 1.88 ± 0.01 |
|
93 |
+
|
94 |
+
|
95 |
+
|
96 |
+
## 4.2 Estimated Time of Arrival Prediction
|
97 |
+
| Model | MAE | RMSE | ACC@30 |
|
98 |
+
|----------|-------|-------|--------|
|
99 |
+
| LightGBM | 30.99 | 35.04 | 0.59 |
|
100 |
+
| SPEED | 23.75 | 27.86 | 0.73 |
|
101 |
+
| KNN | 36.00 | 31.89 | 0.58 |
|
102 |
+
| MLP | 21.54 ± 2.2 | 25.05 ± 2.46 | 0.79 ± 0.04 |
|
103 |
+
| FDNET | **18.47 ± 0.25** | **21.44 ± 0.28** | **0.84 ± 0.01** |
|
104 |
+
|
105 |
+
|
106 |
+
|
107 |
+
## 4.3 Spatio-temporal Graph Forecasting
|
108 |
+
| Method | MAE | RMSE |
|
109 |
+
|-------|-----------------|-----------------|
|
110 |
+
| HA | 5.26 | 11.39 |
|
111 |
+
| DCRNN | 3.69 ± 0.09 | 7.08 ± 0.12 |
|
112 |
+
| STGCN | 3.04 ± 0.02 | 6.42 ± 0.05 |
|
113 |
+
| GWNET | 3.16 ± 0.06 | 6.56 ± 0.11 |
|
114 |
+
| ASTGCN | 3.12 ± 0.06 | 6.48 ± 0.14 |
|
115 |
+
| MTGNN | 3.13 ± 0.04 | 6.51 ± 0.13 |
|
116 |
+
| AGCRN | 3.93 ± 0.03 | 7.99 ± 0.08 |
|
117 |
+
| STGNCDE | 3.74 ± 0.15 | 7.27 ± 0.16 |
|
118 |
+
|
119 |
+
|
120 |
+
|
121 |
+
# 5 Citation
|
122 |
+
To cite this repository:
|
123 |
+
|
124 |
+
```shell
|
125 |
+
@software{pytorchgithub,
|
126 |
+
author = {xx},
|
127 |
+
title = {xx},
|
128 |
+
url = {xx},
|
129 |
+
version = {0.6.x},
|
130 |
+
year = {2021},
|
131 |
+
}
|
132 |
+
```
|