File size: 7,672 Bytes
94fe527
3f8cb0a
 
 
 
 
 
 
 
94fe527
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f8cb0a
 
 
 
 
94fe527
3f8cb0a
 
 
 
 
 
 
dd09f36
 
 
3f8cb0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
---
license: apache-2.0
tags:
- Spatial-Temporal
- Graph
- Logistic
- Last-mile Delivery
size_categories:
- 10M<n<100M
dataset_info:
  features:
  - name: order_id
    dtype: int64
  - name: region_id
    dtype: int64
  - name: city
    dtype: string
  - name: courier_id
    dtype: int64
  - name: lng
    dtype: float64
  - name: lat
    dtype: float64
  - name: aoi_id
    dtype: int64
  - name: aoi_type
    dtype: int64
  - name: accept_time
    dtype: string
  - name: accept_gps_time
    dtype: string
  - name: accept_gps_lng
    dtype: float64
  - name: accept_gps_lat
    dtype: float64
  - name: delivery_time
    dtype: string
  - name: delivery_gps_time
    dtype: string
  - name: delivery_gps_lng
    dtype: float64
  - name: delivery_gps_lat
    dtype: float64
  - name: ds
    dtype: int64
  splits:
  - name: delivery_jl
    num_bytes: 5568309
    num_examples: 31415
  - name: delivery_cq
    num_bytes: 168574531
    num_examples: 931351
  - name: delivery_yt
    num_bytes: 36796326
    num_examples: 206431
  - name: delivery_sh
    num_bytes: 267095520
    num_examples: 1483864
  - name: delivery_hz
    num_bytes: 335088000
    num_examples: 1861600
  download_size: 290229555
  dataset_size: 813122686
---
# 1. About Dataset
**LaDe** is a  publicly available last-mile delivery dataset with  millions of packages from industry. 
It has three unique characteristics:  (1) Large-scale. It involves 10,677k packages of 21k couriers over 6 months of real-world operation. 
(2) Comprehensive information, it offers original package information, such as its location and time requirements, as well as task-event information, which records when and where the courier is while events such as task-accept and task-finish events happen. 
(3) Diversity: the dataset includes data from various scenarios, such as package pick-up and delivery, and from multiple cities, each with its unique spatio-temporal patterns due to their distinct characteristics such as populations.

If you use this dataset for your research, please cite this paper: {xxx}

# 2. Download
[LaDe](https://huggingface.co./datasets/Cainiao-AI/LaDe) is composed of two subdatasets: i) [LaDe-D](https://huggingface.co./datasets/Cainiao-AI/LaDe-D), which comes from the package delivery scenario.
ii) [LaDe-P](https://huggingface.co./datasets/Cainiao-AI/LaDe-P), which comes from the package pickup scenario. To facilitate the utilization of the dataset, each sub-dataset is presented in CSV format.

LaDe-D is the first subdataset from [LaDe](https://huggingface.co./datasets/Cainiao-AI/LaDe).

LaDe can be used for research purposes. Before you download the dataset, please read these terms. And [Code link](https://github.com/wenhaomin/LaDe). Then put the data into "./data/raw/".  
The structure of "./data/raw/" should be like:  
```
* ./data/raw/  
    * delivery    
        * delivery_sh.csv   
        * ...    
```

LaDe-D contains 5 files, with each representing the data from a specific city,  the detail of each city can be find in the following table.


|   City     |  Description                                                                                  |
|------------|----------------------------------------------------------------------------------------------|
| Shanghai   | One of the most prosperous cities in China, with a large number of orders per day.           |
| Hangzhou   | A big city with well-developed online e-commerce and a large number of orders per day.        |
| Chongqing  | A big city with complicated road conditions in China, with a large number of orders.          |
| Jilin      | A middle-size city in China, with a small number of orders each day.                          |
| Yantai     | A small city in China, with a small number of orders every day.                               |


# 3. Description
Below is the detailed field of each LaDe-D.

| Data field            | Description                          | Unit/format   |
|-----------------------|--------------------------------------|---------------|
| **Package information**   |                                      |               |
| package_id            | Unique identifier of each package     | Id            |
| **Stop information**      |                                      |               |
| lng/lat               | Coordinates of each stop              | Float         |
| city                  | City                                 | String        |
| region_id             | Id of the region                      | Id            |
| aoi_id                | Id of the AOI                         | Id            |
| aoi_type              | Type of the AOI                       | Categorical   |
| **Courier Information**   |                                      |               |
| courier_id            | Id of the courier                     | Id            |
| **Task-event Information**|                                      |               |
| accept_time           | The time when the courier accepts the task | Time      |
| accept_gps_time       | The time of the GPS point whose time is the closest to accept time | Time |
| accept_gps_lng/accept_gps_lat | Coordinates when the courier accepts the task | Float |
| delivery_time         | The time when the courier finishes delivering the task | Time |
| delivery_gps_time     | The time of the GPS point whose time is the closest to the delivery time | Time |
| delivery_gps_lng/delivery_gps_lat | Coordinates when the courier finishes the task | Float |
| **Context information**  |                                      |               |
| ds                    | The date of the package delivery      | Date          |


# 4. Leaderboard
Blow shows the performance of different methods in Shanghai.
## 4.1 Route Prediction

Experimental results of route prediction. We use bold and underlined fonts to denote the best and runner-up model, respectively.

| Method       | HR@3         | KRC          | LSD         | ED          |
|--------------|--------------|--------------|-------------|-------------|
| TimeGreedy   | 57.65        | 31.81        | 5.54        | 2.15        |
| DistanceGreedy | 60.77        | 39.81        | 5.54        | 2.15        |
| OR-Tools     | 66.21        | 47.60        | 4.40        | 1.81        |
| LightGBM     | 73.76        | 55.71        | 3.01        | 1.84        |
| FDNET        | 73.27 ± 0.47 | 53.80 ± 0.58 | 3.30 ± 0.04 | 1.84 ± 0.01 |
| DeepRoute    | 74.68 ± 0.07 | 56.60 ± 0.16 | 2.98 ± 0.01 | 1.79 ± 0.01 |
| Graph2Route  | 74.84 ± 0.15 | 56.99 ± 0.52 | 2.86 ± 0.02 | 1.77 ± 0.01 |


## 4.2 Estimated Time of Arrival Prediction

| Method | MAE          | RMSE         | ACC@30      |
| ------ |--------------|--------------|-------------|
| LightGBM | 30.99        | 35.04        | 0.59        |
| SPEED | 23.75        | 27.86        | 0.73        |
| KNN | 36.00        | 31.89        | 0.58        |
| MLP | 21.54 ± 2.20 | 25.05 ± 2.46 | 0.79 ± 0.04 |
| FDNET | 18.47 ± 0.25 | 21.44 ± 0.28 | 0.84 ± 0.01 |


## 4.3 Spatio-temporal Graph Forecasting


| Method | MAE         | RMSE        |
|-------|-------------|-------------|
| HA    | 4.63        | 9.91        |
| DCRNN | 3.69 ± 0.09 | 7.08 ± 0.12 |
| STGCN | 3.04 ± 0.02 | 6.42 ± 0.05 |
| GWNET | 3.16 ± 0.06 | 6.56 ± 0.11 |
| ASTGCN | 3.12 ± 0.06 | 6.48 ± 0.14 |
| MTGNN | 3.13 ± 0.04 | 6.51 ± 0.13 |
| AGCRN  | 3.93 ± 0.03 | 7.99 ± 0.08 |
| STGNCDE  | 3.74 ± 0.15 | 7.27 ± 0.16 |



# 5. Citation
To cite this repository:

```shell
@software{pytorchgithub,
    author = {xx},
    title = {xx},
    url = {xx},
    version = {0.6.x},
    year = {2021},
}
```