|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""The SOCKET Datasets""" |
|
|
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """ |
|
@misc{choi2023llms, |
|
title={Do LLMs Understand Social Knowledge? Evaluating the Sociability of Large Language Models with SocKET Benchmark}, |
|
author={Minje Choi and Jiaxin Pei and Sagar Kumar and Chang Shu and David Jurgens}, |
|
year={2023}, |
|
eprint={2305.14938}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
A unified evaluation benchmark dataset for evaludating socialbility of NLP models. |
|
""" |
|
|
|
_HOMEPAGE = "TBD" |
|
|
|
_LICENSE = "" |
|
|
|
|
|
URL = "SOCKET_DATA/" |
|
URL = "https://huggingface.co./datasets/Blablablab/SOCKET/blob/main/SOCKET_DATA/" |
|
|
|
TASK_DICT = { |
|
'humor_sarcasm': [ |
|
'hahackathon#humor_rating', |
|
'humor-pairs', |
|
'sarc', |
|
'tweet_irony', |
|
'hahackathon#is_humor', |
|
], |
|
'offensive': [ |
|
'contextual-abuse#IdentityDirectedAbuse', |
|
'contextual-abuse#PersonDirectedAbuse', |
|
'hahackathon#offense_rating', |
|
'hasbiasedimplication', |
|
'hateoffensive', |
|
'implicit-hate#explicit_hate', |
|
'implicit-hate#implicit_hate', |
|
'implicit-hate#incitement_hate', |
|
'implicit-hate#inferiority_hate', |
|
'implicit-hate#stereotypical_hate', |
|
'implicit-hate#threatening_hate', |
|
'implicit-hate#white_grievance_hate', |
|
'intentyn', |
|
'jigsaw#severe_toxic', |
|
'jigsaw#identity_hate', |
|
'jigsaw#threat', |
|
'jigsaw#obscene', |
|
'jigsaw#insult', |
|
'jigsaw#toxic', |
|
'offensiveyn', |
|
'sexyn', |
|
'talkdown-pairs', |
|
'toxic-span', |
|
'tweet_offensive' |
|
], |
|
'sentiment_emotion': [ |
|
'crowdflower', |
|
'dailydialog', |
|
'emobank#arousal', |
|
'emobank#dominance', |
|
'emobank#valence', |
|
'emotion-span', |
|
'empathy#distress', |
|
'empathy#distress_bin', |
|
'same-side-pairs', |
|
'sentitreebank', |
|
'tweet_emoji', |
|
'tweet_emotion', |
|
'tweet_sentiment' |
|
], |
|
'social_factors': [ |
|
'complaints', |
|
'empathy#empathy', |
|
'empathy#empathy_bin', |
|
'hayati_politeness', |
|
'questionintimacy', |
|
'stanfordpoliteness' |
|
], |
|
'trustworthy': [ |
|
'bragging#brag_achievement', |
|
'bragging#brag_action', |
|
'bragging#brag_possession', |
|
'bragging#brag_trait', |
|
'hypo-l', |
|
'neutralizing-bias-pairs', |
|
'propaganda-span', |
|
'rumor#rumor_bool', |
|
'two-to-lie#receiver_truth', |
|
'two-to-lie#sender_truth', |
|
] |
|
} |
|
|
|
task2category = {} |
|
for category, tasks in TASK_DICT.items(): |
|
for task in tasks: |
|
task2category[task] = category |
|
|
|
TASK_NAMES = [] |
|
for tasks in TASK_DICT.values(): |
|
TASK_NAMES.extend(tasks) |
|
TASK_NAMES = sorted(TASK_NAMES) |
|
|
|
print(len(TASK_NAMES)) |
|
_URLs = {} |
|
for task in TASK_NAMES: |
|
_URLs[task] = {} |
|
for s in ['train', 'test', 'val']: |
|
for t in ['text', 'labels']: |
|
task_url = '%s%s/%s_%s.txt'%(URL,task,s,t) |
|
task_url = task_url.replace('#','%23') |
|
_URLs[task][s + '_' + t] = task_url |
|
|
|
class SOCKETConfig(datasets.BuilderConfig): |
|
def __init__(self, *args, type=None, sub_type=None, **kwargs): |
|
super().__init__( |
|
*args, |
|
name=f"{type}", |
|
**kwargs, |
|
) |
|
self.type = type |
|
self.sub_type = sub_type |
|
|
|
|
|
class SOCKET(datasets.GeneratorBasedBuilder): |
|
"""SOCKET Dataset.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
SOCKETConfig( |
|
type=key, |
|
sub_type=None, |
|
version=datasets.Version("1.1.0"), |
|
description=f"This part of my dataset covers {key} part of the SocKET Dataset.", |
|
) |
|
for key in list(TASK_NAMES) |
|
] |
|
|
|
def _info(self): |
|
if self.config.type == "questionintimacy": |
|
names = ['Very-intimate', 'Intimate', 'Somewhat-intimate', 'Not-very-intimate', 'Not-intimate', 'Not-intimate-at-all'] |
|
elif self.config.type == "sexyn": |
|
names = ['not sexism', 'sexism'] |
|
elif self.config.type == "intentyn": |
|
names = ['not intentional', 'intentional'] |
|
elif self.config.type == "offensiveyn": |
|
names = ['not offensive', 'offensive'] |
|
elif self.config.type == "hasbiasedimplication": |
|
names = ['not biased', 'biased'] |
|
elif self.config.type == "trofi": |
|
names = ['metaphor', 'non-metaphor'] |
|
elif self.config.type == "sentitreebank": |
|
names = ['positive', 'negative'] |
|
elif self.config.type == "sarc": |
|
names = ['sarcastic', 'literal'] |
|
elif self.config.type == "stanfordpoliteness": |
|
names = ['polite', 'impolite'] |
|
elif self.config.type == "sarcasmghosh": |
|
names = ['sarcastic', 'literal'] |
|
elif self.config.type == "dailydialog": |
|
names = ['noemotion', 'anger', 'disgust', 'fear', 'happiness', 'sadness', 'surprise'] |
|
elif self.config.type == "shortromance": |
|
names = ['romantic', 'literal'] |
|
elif self.config.type == "crowdflower": |
|
names = ['empty', 'sadness', 'enthusiasm', 'neutral', 'worry', 'love', 'fun', 'hate', 'happiness', 'relief', 'boredom', 'surprise', 'anger'] |
|
elif self.config.type == "vua": |
|
names = ['metaphor', 'non-metaphor'] |
|
elif self.config.type == "shorthumor": |
|
names = ['humorous', 'literal'] |
|
elif self.config.type == "shortjokekaggle": |
|
names = ['humorous', 'literal'] |
|
elif self.config.type == "hateoffensive": |
|
names = ['hate', 'offensive', 'neither'] |
|
elif self.config.type == "emobank#valence": |
|
names = ['valence(positive)'] |
|
elif self.config.type == "emobank#arousal": |
|
names = ['arousal(excited)'] |
|
elif self.config.type == "emobank#dominance": |
|
names = ['dominance(being_in_control)'] |
|
elif self.config.type == "hayati_politeness": |
|
names = ['impolite', 'polite'] |
|
elif self.config.type == "jigsaw#toxic": |
|
names = ['not toxic', 'toxic'] |
|
elif self.config.type == "jigsaw#severe_toxic": |
|
names = ['not severe toxic', 'severe toxic'] |
|
elif self.config.type == "jigsaw#obscene": |
|
names = ['not obscene', 'obscene'] |
|
elif self.config.type == "jigsaw#threat": |
|
names = ['not threat', 'threat'] |
|
elif self.config.type == "jigsaw#insult": |
|
names = ['not insult', 'insult'] |
|
elif self.config.type == "jigsaw#identity_hate": |
|
names = ['not identity hate', 'identity hate'] |
|
elif self.config.type == "standup-comedy": |
|
names = ['not funny', 'funny'] |
|
elif self.config.type == "complaints": |
|
names = ['not complaint', 'complaint'] |
|
elif self.config.type == "hypo-l": |
|
names = ['not hyperbole', 'hyperbole'] |
|
elif self.config.type == "bragging#brag_action": |
|
names = ['not action bragging', 'action bragging'] |
|
elif self.config.type == "bragging#brag_feeling": |
|
names = ['not feeling bragging', 'feeling bragging'] |
|
elif self.config.type == "bragging#brag_achievement": |
|
names = ['not achievement bragging', 'achievement bragging'] |
|
elif self.config.type == "bragging#brag_possession": |
|
names = ['not possession bragging', 'possession bragging'] |
|
elif self.config.type == "bragging#brag_trait": |
|
names = ['not trait bragging', 'trait bragging'] |
|
elif self.config.type == "bragging#brag_affiliation": |
|
names = ['not affiliation bragging', 'affiliation bragging'] |
|
elif self.config.type == "contextual-abuse#IdentityDirectedAbuse": |
|
names = ['not identity directed abuse', 'identity directed abuse'] |
|
elif self.config.type == "contextual-abuse#AffiliationDirectedAbuse": |
|
names = ['not affiliation directed abuse', 'affiliation directed abuse'] |
|
elif self.config.type == "contextual-abuse#PersonDirectedAbuse": |
|
names = ['not person directed abuse', 'person directed abuse'] |
|
elif self.config.type == "contextual-abuse#CounterSpeech": |
|
names = ['not counter speech', 'counter speech'] |
|
elif self.config.type == "hahackathon#is_humor": |
|
names = ['not humor', 'humor'] |
|
elif self.config.type == "hahackathon#humor_rating": |
|
names = ['humor rating'] |
|
elif self.config.type == "hahackathon#offense_rating": |
|
names = ['offense rating'] |
|
elif self.config.type == "check_worthiness": |
|
names = ['not check-worthy', 'check-worthy'] |
|
elif self.config.type == "rumor#rumor_tf": |
|
names = ['not rumor tf', 'rumor tf'] |
|
elif self.config.type == "rumor#rumor_bool": |
|
names = ['not rumor', 'rumor'] |
|
elif self.config.type == "two-to-lie#deception": |
|
names = ['not deception', 'deception'] |
|
elif self.config.type == "two-to-lie#sender_truth": |
|
names = ['lie', 'truth'] |
|
elif self.config.type == "two-to-lie#receiver_truth": |
|
names = ['lie', 'truth'] |
|
elif self.config.type == "deceitful-reviews#true_rumor": |
|
names = ['fake review', 'true review'] |
|
elif self.config.type == "deceitful-reviews#positive": |
|
names = ['negative', 'positive'] |
|
elif self.config.type == "empathy#empathy": |
|
names = ['empathy'] |
|
elif self.config.type == "empathy#distress": |
|
names = ['distress'] |
|
elif self.config.type == "empathy#empathy_bin": |
|
names = ['not empathy', 'empathy'] |
|
elif self.config.type == "empathy#distress_bin": |
|
names = ['not distress', 'distress bin'] |
|
elif self.config.type == "implicit-hate#explicit_hate": |
|
names = ['not explicit hate', 'explicit hate'] |
|
elif self.config.type == "implicit-hate#implicit_hate": |
|
names = ['not implicit hate', 'implicit hate'] |
|
elif self.config.type == "implicit-hate#threatening_hate": |
|
names = ['not threatening hate', 'threatening hate'] |
|
elif self.config.type == "implicit-hate#irony_hate": |
|
names = ['not irony hate', 'irony hate'] |
|
elif self.config.type == "implicit-hate#other_hate": |
|
names = ['not other hate', 'other hate'] |
|
elif self.config.type == "implicit-hate#incitement_hate": |
|
names = ['not incitement hate', 'incitement hate'] |
|
elif self.config.type == "implicit-hate#inferiority_hate": |
|
names = ['not inferiority hate', 'inferiority hate'] |
|
elif self.config.type == "implicit-hate#stereotypical_hate": |
|
names = ['not stereotypical hate', 'stereotypical hate'] |
|
elif self.config.type == "implicit-hate#white_grievance_hate": |
|
names = ['not white grievance hate', 'white grievance hate'] |
|
elif self.config.type == "waseem_and_hovy#sexism": |
|
names = ['not sexism', 'sexism'] |
|
elif self.config.type == "waseem_and_hovy#racism": |
|
names = ['not racism', 'racism'] |
|
elif self.config.type == "humor-pairs": |
|
names = ['the first sentence is funnier', 'the second sentence is funnier'] |
|
elif self.config.type == "neutralizing-bias-pairs": |
|
names = ['the first sentence is biased', 'the second sentence is biased'] |
|
elif self.config.type == "same-side-pairs": |
|
names = ['not same side', 'same side'] |
|
elif self.config.type == "talkdown-pairs": |
|
names = ['not condescension', 'condescension'] |
|
elif self.config.type == "tweet_sentiment": |
|
names = ["negative", "neutral", "positive"] |
|
elif self.config.type == "tweet_offensive": |
|
names = ["not offensive", "offensive"] |
|
elif self.config.type == "tweet_irony": |
|
names = ["not irony", "irony"] |
|
elif self.config.type == "tweet_hate": |
|
names = ["not hate", "hate"] |
|
elif self.config.type == "tweet_emoji": |
|
names = [ |
|
"β€", |
|
"π", |
|
"π", |
|
"π", |
|
"π₯", |
|
"π", |
|
"π", |
|
"β¨", |
|
"π", |
|
"π", |
|
"π·", |
|
"πΊπΈ", |
|
"β", |
|
"π", |
|
"π", |
|
"π―", |
|
"π", |
|
"π", |
|
"πΈ", |
|
"π", |
|
] |
|
|
|
elif self.config.type == "tweet_emotion": |
|
names = ["anger", "joy", "optimism", "sadness"] |
|
elif self.config.type == "emotion-span": |
|
names = ['cause'] |
|
label_type = datasets.Sequence(feature={n:datasets.Value(dtype='string', id=None) for n in names}) |
|
print(label_type) |
|
elif self.config.type == "propaganda-span": |
|
names = ['propaganda'] |
|
label_type = datasets.Sequence(feature={n:datasets.Value(dtype='string', id=None) for n in names}) |
|
elif self.config.type == "toxic-span": |
|
names = ['toxic'] |
|
label_type = datasets.Sequence(feature={n:datasets.Value(dtype='string', id=None) for n in names}) |
|
|
|
if self.config.type[-4:]=='span': |
|
label_type = label_type |
|
elif len(names) > 1: |
|
label_type = datasets.features.ClassLabel(names=names) |
|
else: |
|
label_type = datasets.Value("float32") |
|
|
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{"text": datasets.Value("string"), |
|
"label": label_type} |
|
), |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
print("Testing _split_generators") |
|
my_urls = _URLs[self.config.type] |
|
print('my_urls: ',my_urls) |
|
data_dir = dl_manager.download_and_extract(my_urls) |
|
print('data_dir: ',data_dir) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={"text_path": data_dir["train_text"], "labels_path": data_dir["train_labels"]}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
|
|
gen_kwargs={"text_path": data_dir["test_text"], "labels_path": data_dir["test_labels"]}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
|
|
gen_kwargs={"text_path": data_dir["val_text"], "labels_path": data_dir["val_labels"]}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, text_path, labels_path): |
|
"""Yields examples.""" |
|
|
|
with open(text_path, encoding="utf-8") as f: |
|
texts = f.readlines() |
|
print(len(texts)) |
|
with open(labels_path, encoding="utf-8") as f: |
|
labels = f.readlines() |
|
print(len(labels)) |
|
|
|
for i, text in enumerate(texts): |
|
yield i, {"text": text.strip(), "label": labels[i].strip() if self.config.type[-4:]!='span' else eval(labels[i])} |