File size: 1,944 Bytes
0f804a9 c5aeac4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
---
license: cc-by-4.0
---
# Dataset Card for Dataset Name
## Dataset Description
- **Homepage:**
- **Repository: https://github.com/minjechoi/SOCKET
- **Paper: Do LLMs Understand Social Knowledge? Evaluating the Sociability of Large Language Models with SocKET Benchmark [link](https://arxiv.org/abs/2305.14938)
- **Leaderboard:**
- **Point of Contact:**
### Dataset Summary
This Dataset contains the tasks used in the paper "Do LLMs Understand Social Knowledge? Evaluating the Sociability of Large Language Models with SocKET Benchmark" [link](https://arxiv.org/abs/2305.14938).
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
English
## Dataset Structure
### Data Instances
[More Information Needed]
### Data Fields
[More Information Needed]
### Data Splits
[More Information Needed]
## Dataset Creation
This benchmark is created by aggregating several existing NLP datasets that measure different aspects of social information.
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
@misc{choi2023llms,
title={Do LLMs Understand Social Knowledge? Evaluating the Sociability of Large Language Models with SocKET Benchmark},
author={Minje Choi and Jiaxin Pei and Sagar Kumar and Chang Shu and David Jurgens},
year={2023},
eprint={2305.14938},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
### Contributions
[More Information Needed] |