--- annotations_creators: - crowdsourced language_creators: - crowdsourced language: - ko license: - cc-by-4.0 multilinguality: - monolingual pretty_name: laion2B-multi-korean-subset size_categories: - 10M>> from datasets import load_dataset >>> dataset = load_dataset("Bingsu/laion2B-multi-korean-subset") >>> dataset DatasetDict({ train: Dataset({ features: ['SAMPLE_ID', 'URL', 'TEXT', 'HEIGHT', 'WIDTH', 'LICENSE', 'LANGUAGE', 'NSFW', 'similarity'], num_rows: 11376263 }) }) ``` ```py >>> dataset["train"].features {'SAMPLE_ID': Value(dtype='int64', id=None), 'URL': Value(dtype='string', id=None), 'TEXT': Value(dtype='string', id=None), 'HEIGHT': Value(dtype='int32', id=None), 'WIDTH': Value(dtype='int32', id=None), 'LICENSE': Value(dtype='string', id=None), 'LANGUAGE': Value(dtype='string', id=None), 'NSFW': Value(dtype='string', id=None), 'similarity': Value(dtype='float32', id=None)} ``` ### Data Size download: 1.56 GiB
generated: 2.37 GiB
total: 3.93 GiB ### Data Field - 'SAMPLE_ID': `int` - 'URL': `string` - 'TEXT': `string` - 'HEIGHT': `int` - 'WIDTH': `int` - 'LICENSE': `string` - 'LANGUAGE': `string` - 'NSFW': `string` - 'similarity': `float` ### Data Splits | | train | | --------- | -------- | | # of data | 11376263 | ## Note ### Height, Width 이미지의 가로가 `HEIGHT`로, 세로가 `WIDTH`로 되어있는 것 같습니다. ```pycon >>> dataset["train"][98] {'SAMPLE_ID': 2937471001780, 'URL': 'https://image.ajunews.com/content/image/2019/04/12/20190412175643597949.png', 'TEXT': '인천시교육청, 인천 시군구발전협의회 임원진과의 간담회 개최', 'HEIGHT': 640, 'WIDTH': 321, 'LICENSE': '?', 'LANGUAGE': 'ko', 'NSFW': 'UNLIKELY', 'similarity': 0.33347243070602417} ``` ![image](https://image.ajunews.com/content/image/2019/04/12/20190412175643597949.png) ### csv file, pandas ```py # pip install zstandard import pandas as pd from huggingface_hub import hf_hub_url url = hf_hub_url("Bingsu/laion2B-multi-korean-subset", filename="laion2B-multi-korean-subset.csv.zst", repo_type="dataset") # url = "https://huggingface.co./datasets/Bingsu/laion2B-multi-korean-subset/resolve/main/laion2B-multi-korean-subset.csv.zst" df = pd.read_csv(url) ``` 778 MB ### Code used to generate ```py import csv import re from datasets import load_dataset from tqdm import tqdm pattern = re.compile(r"[가-힣]") def quote(s: str) -> str: s = s.replace('"""', "") return s def filter_func(example) -> bool: lang = example.get("LANGUAGE") text = example.get("TEXT") if not isinstance(lang, str) or not isinstance(text, str): return False return lang == "ko" or pattern.search(text) is not None file = open("./laion2B-mulit_korean_subset.csv", "w", encoding="utf-8", newline="") ds = load_dataset("laion/laion2B-multi", split="train", streaming=True) dsf = ds.filter(filter_func) header = [ "SAMPLE_ID", "URL", "TEXT", "HEIGHT", "WIDTH", "LICENSE", "LANGUAGE", "NSFW", "similarity", ] writer = csv.DictWriter(file, fieldnames=header) writer.writeheader() try: for data in tqdm(dsf): # total=11378843 data["TEXT"] = quote(data.get("TEXT", "")) if data["TEXT"]: writer.writerow(data) finally: file.close() print("Done!") ``` 실행에 약 8시간이 소요되었습니다. 이후에 `HEIGHT`나 `WIDTH`가 None인 데이터를 제거하고 업로드하였습니다. ### img2dataset [img2dataset](https://github.com/rom1504/img2dataset)을 사용하여 URL로된 이미지들을 데이터셋 형태로 만들 수 있습니다.