Datasets:

Modalities:
Image
Text
Formats:
json
ArXiv:
Libraries:
Datasets
pandas
License:
BennoKrojer commited on
Commit
a084863
1 Parent(s): 170b01a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +19 -38
README.md CHANGED
@@ -13,47 +13,38 @@ And download `image_sets.zip` for all images sets (each directory consisting of
13
 
14
  ## Dataset Description
15
 
16
- - **Homepage:**
17
- - **Repository:**
18
- - **Paper:**
19
- - **Leaderboard:**
20
- - **Point of Contact:**
21
 
22
  ### Dataset Summary
23
 
 
 
24
  ## Dataset Structure
25
 
26
  ### Data Instances
27
 
 
 
 
 
 
 
28
  ### Data Splits
29
 
 
 
 
 
 
30
 
31
  ## Dataset Creation
32
 
33
  ### Curation Rationale
34
 
35
- ### Source Data
36
-
37
- #### Initial Data Collection and Normalization
38
-
39
- #### Who are the source language producers?
40
-
41
- ### Annotations
42
-
43
- #### Annotation process
44
-
45
- #### Who are the annotators?
46
-
47
-
48
- ### Personal and Sensitive Information
49
-
50
- ### Data Splits
51
-
52
-
53
- ## Dataset Creation
54
-
55
- ### Curation Rationale
56
-
57
 
58
  ### Source Data
59
 
@@ -93,14 +84,4 @@ And download `image_sets.zip` for all images sets (each directory consisting of
93
  ### Licensing Information
94
 
95
 
96
- ### Citation Information
97
-
98
-
99
- We provide the text description here.
100
- Image sets can be downloaded on [Zenodo](https://zenodo.org/record/6518944#.YnLboHWZPUQ) or [GoogleDrive](https://drive.google.com/file/d/1OIKNyU0F9lThbaZZ3Jvm7AlF94n1MzDk/view?usp=sharing).
101
-
102
- You can download from the commandline via:
103
-
104
- ```
105
- wget https://zenodo.org/record/6518944/files/image-sets.zip
106
- ```
 
13
 
14
  ## Dataset Description
15
 
16
+ - **Homepage & Leaderboard:** https://mcgill-nlp.github.io/imagecode/
17
+ - **Repository:** https://github.com/McGill-NLP/imagecode
18
+ - **Paper:** https://arxiv.org/abs/2203.15867
19
+ - **Point of Contact:** benno DOT krojer ÄT gmail DOT com
 
20
 
21
  ### Dataset Summary
22
 
23
+ We introduce ImageCoDe, a vision-and-language benchmark that requires contextual language understanding in the form of pragmatics, temporality, long descriptions and visual nuances. The task: Given a detailed description, retrieve the target image among 10 minimally contrastive images. ImageCoDe contains 21K descriptions and 94K images. THe images are primarily frames based on video datasets.
24
+
25
  ## Dataset Structure
26
 
27
  ### Data Instances
28
 
29
+ An instance contains a description, the corresponding image set name, and the target index:
30
+ ```
31
+ {"image_set": "video-storytelling-videowedding_de8dLXvgV-I-shot6_0",
32
+ "image_index": "8",
33
+ "description": "The flowers the woman in the teal strapless dress is carrying are completely obscured by the man in the black shirt's head. "}
34
+ ```
35
  ### Data Splits
36
 
37
+ | Dataset Split | Number of Descriptions in Split |
38
+ | ------------- |----------------------------- |
39
+ | Train | 16,594 |
40
+ | Validation | 2,302 |
41
+ | Test | 2,306 |
42
 
43
  ## Dataset Creation
44
 
45
  ### Curation Rationale
46
 
47
+ The main goal of ImageCoDe is to highlight weaknesses of recent Vision-and-Language models regarding complex language and fine-grained visual representations. In addition, we found that the dataset offers plenty of pragmatic examples and is therefore suitable for studying pragmatics.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48
 
49
  ### Source Data
50
 
 
84
  ### Licensing Information
85
 
86
 
87
+ ### Citation Information