File size: 2,857 Bytes
a52792d 7900bad a52792d 7900bad a52792d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
"""
BatteRaquette58/airbnb-stock-price (c) by BatteRaquette58
BatteRaquette58/airbnb-stock-price is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License.
You should have received a copy of the license along with this
work. If not, see <https://creativecommons.org/licenses/by-sa/4.0/>.
"""
from datasets import load_dataset, Dataset
from numpy import array
from datetime import datetime
from time import mktime
from re import match
from pickle import dump
from huggingface_hub import HfApi
# load original datasets
stock_price = array(load_dataset("nateraw/airbnb-stock-price")["train"])
stock_price_2 = array(load_dataset("nateraw/airbnb-stock-price-2")["train"])
datasets = (stock_price, stock_price_2)
def convert_to_timestamp(date: str) -> float:
"Converts different date format strings from the datasets into a timestamp."
# detect different date formats, and convert them accordingly
datetime_obj = None
if match("[0-9][0-9]-[0-9][0-9]-[0-9][0-9][0-9][0-9]", date):
datetime_obj = datetime.strptime(date, "%m-%d-%Y").timetuple()
elif match("[0-9][0-9]/[0-9][0-9]/[0-9][0-9]", date):
datetime_obj = datetime.strptime(date, "%m/%d/%y").timetuple()
else:
raise ValueError(f"Invalid date {date}")
# convert datetime struct into a timestamp
return mktime(datetime_obj)
def data_generator():
"Generator yielding the new merged dataset rows."
dates = [] # to not have duplicate dates
for stock in datasets:
for price in stock:
row = {}
row["date"] = convert_to_timestamp(price["Date"] if "Date" in price else price["open"])
dates.append(row["date"])
row["open"] = price["Open"] if "Open" in price else price["open"]
row["close_last"] = price["Adj.Close"] if "Adj.Close" in price else price["open"]
row["volume"] = price["Volume"] if "Volume" in price else price["open"]
row["high"] = price["High"] if "High" in price else price["open"]
row["low"] = price["Low"] if "Low" in price else price["open"]
yield row
# generate dataset object, export them, and push to hub
dataset = Dataset.from_generator(data_generator)
dataset.to_csv("airbnb-stock.csv")
dataset.to_parquet("airbnb-stock.parquet")
dataset.to_json("airbnb-stock.json")
with open("airbnb-stock.pickle", "wb") as file:
dump(dataset.to_dict(), file)
dataset.push_to_hub("BatteRaquette58/airbnb-stock")
api = HfApi()
for file in ("airbnb-stock.csv", "airbnb-stock.parquet", "airbnb-stock.json", "airbnb-stock.pickle"):
api.upload_file(
path_or_fileobj=file,
path_in_repo=f"data/{file}",
repo_id="BatteRaquette58/airbnb-stock-price",
repo_type="dataset",
)
|