# I am trying to understand to the following code. Do not use this for any purpose as I do not support this. # Use the original source from https://huggingface.co./datasets/DFKI-SLT/science_ie/raw/main/science_ie.py # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Semeval2018Task7 is a dataset that describes the first task on semantic relation extraction and classification in scientific paper abstracts""" import glob import datasets import xml.dom.minidom import xml.etree.ElementTree as ET # Find for instance the citation on arxiv or on the dataset repo/website _CITATION = """\ @inproceedings{gabor-etal-2018-semeval, title = "{S}em{E}val-2018 Task 7: Semantic Relation Extraction and Classification in Scientific Papers", author = {G{\'a}bor, Kata and Buscaldi, Davide and Schumann, Anne-Kathrin and QasemiZadeh, Behrang and Zargayouna, Ha{\"\i}fa and Charnois, Thierry}, booktitle = "Proceedings of the 12th International Workshop on Semantic Evaluation", month = jun, year = "2018", address = "New Orleans, Louisiana", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/S18-1111", doi = "10.18653/v1/S18-1111", pages = "679--688", abstract = "This paper describes the first task on semantic relation extraction and classification in scientific paper abstracts at SemEval 2018. The challenge focuses on domain-specific semantic relations and includes three different subtasks. The subtasks were designed so as to compare and quantify the effect of different pre-processing steps on the relation classification results. We expect the task to be relevant for a broad range of researchers working on extracting specialized knowledge from domain corpora, for example but not limited to scientific or bio-medical information extraction. The task attracted a total of 32 participants, with 158 submissions across different scenarios.", } """ # You can copy an official description _DESCRIPTION = """\ This paper describes the first task on semantic relation extraction and classification in scientific paper abstracts at SemEval 2018. The challenge focuses on domain-specific semantic relations and includes three different subtasks. The subtasks were designed so as to compare and quantify the effect of different pre-processing steps on the relation classification results. We expect the task to be relevant for a broad range of researchers working on extracting specialized knowledge from domain corpora, for example but not limited to scientific or bio-medical information extraction. The task attracted a total of 32 participants, with 158 submissions across different scenarios. """ # Add a link to an official homepage for the dataset here _HOMEPAGE = "https://github.com/gkata/SemEval2018Task7/tree/testing" # Add the licence for the dataset here if you can find it _LICENSE = "" # Add link to the official dataset URLs here # The HuggingFace Datasets library doesn't host the datasets but only points to the original files. # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method) _URLS = { "Subtask_1_1": { "train": { "relations": "https://raw.githubusercontent.com/gkata/SemEval2018Task7/testing/1.1.relations.txt", "text": "https://raw.githubusercontent.com/gkata/SemEval2018Task7/testing/1.1.text.xml", }, "test": { "relations": "https://raw.githubusercontent.com/gkata/SemEval2018Task7/testing/1.1.test.relations.txt", "text": "https://raw.githubusercontent.com/gkata/SemEval2018Task7/testing/1.1.test.text.xml", }, }, "Subtask_1_2": { "train": { "relations": "https://raw.githubusercontent.com/gkata/SemEval2018Task7/testing/1.2.relations.txt", "text": "https://raw.githubusercontent.com/gkata/SemEval2018Task7/testing/1.2.text.xml", }, "test": { "relations": "https://raw.githubusercontent.com/gkata/SemEval2018Task7/testing/1.2.test.relations.txt", "text": "https://raw.githubusercontent.com/gkata/SemEval2018Task7/testing/1.2.test.text.xml", }, }, } def all_text_nodes(root): if root.text is not None: yield root.text for child in root: if child.tail is not None: yield child.tail def reading_entity_data(ET_data_to_convert): parsed_data = ET.tostring(ET_data_to_convert,"utf-8") parsed_data= parsed_data.decode('utf8').replace("b\'","") parsed_data= parsed_data.replace("","") parsed_data= parsed_data.replace("","") parsed_data= parsed_data.replace("","") parsed_data= parsed_data.replace("","") parsed_data = parsed_data.replace("\n\n\n","") parsing_tag = False final_string = "" tag_string= "" current_tag_id = "" current_tag_starting_pos = 0 current_tag_ending_pos= 0 entity_mapping_list=[] for i in parsed_data: if i=='<': parsing_tag = True if current_tag_id!="": current_tag_ending_pos = len(final_string)-1 entity_mapping_list.append({"id":current_tag_id, "char_start":current_tag_starting_pos, "char_end":current_tag_ending_pos+1}) current_tag_id= "" tag_string="" elif i=='>': parsing_tag = False tag_string_split = tag_string.split('"') if len(tag_string_split)>1: current_tag_id= tag_string.split('"')[1] current_tag_starting_pos = len(final_string) else: if parsing_tag!=True: final_string = final_string + i else: tag_string = tag_string + i return {"text_data":final_string, "entities":entity_mapping_list} class Semeval2018Task7(datasets.GeneratorBasedBuilder): """ Semeval2018Task7 is a dataset for semantic relation extraction and classification in scientific paper abstracts """ VERSION = datasets.Version("1.1.0") BUILDER_CONFIGS = [ datasets.BuilderConfig(name="Subtask_1_1", version=VERSION, description="Relation classification on clean data"), datasets.BuilderConfig(name="Subtask_1_2", version=VERSION, description="Relation classification on noisy data"), ] DEFAULT_CONFIG_NAME = "Subtask_1_1" def _info(self): class_labels = ["","USAGE", "RESULT", "MODEL-FEATURE", "PART_WHOLE", "TOPIC", "COMPARE"] features = datasets.Features( { "id": datasets.Value("string"), "title": datasets.Value("string"), "abstract": datasets.Value("string"), "entities": [ { "id": datasets.Value("string"), "char_start": datasets.Value("int32"), "char_end": datasets.Value("int32") } ], "relation": [ { "label": datasets.ClassLabel(names=class_labels), "arg1": datasets.Value("string"), "arg2": datasets.Value("string"), "reverse": datasets.Value("bool") } ] } ) return datasets.DatasetInfo( # This is the description that will appear on the datasets page. description=_DESCRIPTION, # This defines the different columns of the dataset and their types features=features, # Here we define them above because they are different between the two configurations # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and # specify them. They'll be used if as_supervised=True in builder.as_dataset. # supervised_keys=("sentence", "label"), # Homepage of the dataset for documentation homepage=_HOMEPAGE, # License for the dataset if available license=_LICENSE, # Citation for the dataset citation=_CITATION, ) def _split_generators(self, dl_manager): # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files. # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive urls = _URLS[self.config.name] downloaded_files = dl_manager.download(urls) print(downloaded_files) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, # These kwargs will be passed to _generate_examples gen_kwargs={ "relation_filepath": downloaded_files['train']["relations"], "text_filepath": downloaded_files['train']["text"], } ), datasets.SplitGenerator( name=datasets.Split.TEST, # These kwargs will be passed to _generate_examples gen_kwargs={ "relation_filepath": downloaded_files['test']["relations"], "text_filepath": downloaded_files['test']["text"], } )] # method parameters are unpacked from `gen_kwargs` as given in `_split_generators` def _generate_examples(self, relation_filepath, text_filepath): # TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset. # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example. with open(relation_filepath, encoding="utf-8") as f: relations = [] text_id_to_relations_map= {} for key, row in enumerate(f): row_split = row.strip("\n").split("(") use_case = row_split[0] second_half = row_split[1].strip(")") second_half_splits = second_half.split(",") size = len(second_half_splits) relation = { "label": use_case, "arg1": second_half_splits[0], "arg2": second_half_splits[1], "reverse": True if size == 3 else False } relations.append(relation) arg_id = second_half_splits[0].split(".")[0] if arg_id not in text_id_to_relations_map: text_id_to_relations_map[arg_id] = [relation] else: text_id_to_relations_map[arg_id].append(relation) #print("result", text_id_to_relations_map) #for arg_id, values in text_id_to_relations_map.items(): #print(f"ID: {arg_id}") # for value in values: # (value) doc2 = ET.parse(text_filepath) root = doc2.getroot() for child in root: if child.find("title")==None: continue text_id = child.attrib #print("text_id", text_id) if child.find("abstract")==None: continue title = child.find("title").text child_abstract = child.find("abstract") abstract_text_and_entities = reading_entity_data(child.find("abstract")) title_text_and_entities = reading_entity_data(child.find("title")) text_relations = [] if text_id['id'] in text_id_to_relations_map: text_relations = text_id_to_relations_map[text_id['id']] yield text_id['id'], { "id": text_id['id'], "title": title_text_and_entities['text_data'], "abstract": abstract_text_and_entities['text_data'], "entities": abstract_text_and_entities['entities'] + title_text_and_entities['entities'], "relation": text_relations }