Datasets:
Tasks:
Text Classification
Modalities:
Text
Sub-tasks:
entity-linking-classification
Languages:
English
Size:
< 1K
License:
File size: 13,146 Bytes
ac9d2c0 21d8a8c ac9d2c0 757e86e ac9d2c0 757e86e ac9d2c0 4eaa197 ac9d2c0 4eaa197 ac9d2c0 4eaa197 ac9d2c0 21d8a8c ac9d2c0 21d8a8c ac9d2c0 32c401c ac9d2c0 21d8a8c ac9d2c0 4eaa197 ac9d2c0 4eaa197 ac9d2c0 4eaa197 ac9d2c0 4eaa197 ac9d2c0 4eaa197 ac9d2c0 4eaa197 ac9d2c0 4eaa197 ac9d2c0 4eaa197 ac9d2c0 4eaa197 ac9d2c0 4eaa197 ac9d2c0 21d8a8c ac9d2c0 21d8a8c ac9d2c0 fe5e5af ac9d2c0 21d8a8c ac9d2c0 fe5e5af ac9d2c0 fe5e5af 21d8a8c fe5e5af ac9d2c0 fe5e5af ac9d2c0 21d8a8c fe5e5af 21d8a8c ac9d2c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
# I am trying to understand to the following code. Do not use this for any purpose as I do not support this.
# Use the original source from https://huggingface.co./datasets/DFKI-SLT/science_ie/raw/main/science_ie.py
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Semeval2018Task7 is a dataset that describes the first task on semantic relation extraction and classification in scientific paper abstracts"""
import glob
import datasets
import xml.dom.minidom
import xml.etree.ElementTree as ET
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@inproceedings{gabor-etal-2018-semeval,
title = "{S}em{E}val-2018 Task 7: Semantic Relation Extraction and Classification in Scientific Papers",
author = {G{\'a}bor, Kata and
Buscaldi, Davide and
Schumann, Anne-Kathrin and
QasemiZadeh, Behrang and
Zargayouna, Ha{\"\i}fa and
Charnois, Thierry},
booktitle = "Proceedings of the 12th International Workshop on Semantic Evaluation",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S18-1111",
doi = "10.18653/v1/S18-1111",
pages = "679--688",
abstract = "This paper describes the first task on semantic relation extraction and classification in
scientific paper abstracts at SemEval 2018. The challenge focuses on domain-specific semantic relations
and includes three different subtasks. The subtasks were designed so as to compare and quantify the
effect of different pre-processing steps on the relation classification results. We expect the task to
be relevant for a broad range of researchers working on extracting specialized knowledge from domain
corpora, for example but not limited to scientific or bio-medical information extraction. The task
attracted a total of 32 participants, with 158 submissions across different scenarios.",
}
"""
# You can copy an official description
_DESCRIPTION = """\
This paper describes the first task on semantic relation extraction and classification in scientific paper
abstracts at SemEval 2018. The challenge focuses on domain-specific semantic relations and includes three
different subtasks. The subtasks were designed so as to compare and quantify the effect of different
pre-processing steps on the relation classification results. We expect the task to be relevant for a broad
range of researchers working on extracting specialized knowledge from domain corpora, for example but not
limited to scientific or bio-medical information extraction. The task attracted a total of 32 participants,
with 158 submissions across different scenarios.
"""
# Add a link to an official homepage for the dataset here
_HOMEPAGE = "https://github.com/gkata/SemEval2018Task7/tree/testing"
# Add the licence for the dataset here if you can find it
_LICENSE = ""
# Add link to the official dataset URLs here
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URLS = {
"Subtask_1_1": {
"train": {
"relations": "https://raw.githubusercontent.com/gkata/SemEval2018Task7/testing/1.1.relations.txt",
"text": "https://raw.githubusercontent.com/gkata/SemEval2018Task7/testing/1.1.text.xml",
},
"test": {
"relations": "https://raw.githubusercontent.com/gkata/SemEval2018Task7/testing/1.1.test.relations.txt",
"text": "https://raw.githubusercontent.com/gkata/SemEval2018Task7/testing/1.1.test.text.xml",
},
},
"Subtask_1_2": {
"train": {
"relations": "https://raw.githubusercontent.com/gkata/SemEval2018Task7/testing/1.2.relations.txt",
"text": "https://raw.githubusercontent.com/gkata/SemEval2018Task7/testing/1.2.text.xml",
},
"test": {
"relations": "https://raw.githubusercontent.com/gkata/SemEval2018Task7/testing/1.2.test.relations.txt",
"text": "https://raw.githubusercontent.com/gkata/SemEval2018Task7/testing/1.2.test.text.xml",
},
},
}
def all_text_nodes(root):
if root.text is not None:
yield root.text
for child in root:
if child.tail is not None:
yield child.tail
def reading_entity_data(ET_data_to_convert):
parsed_data = ET.tostring(ET_data_to_convert,"utf-8")
parsed_data= parsed_data.decode('utf8').replace("b\'","")
parsed_data= parsed_data.replace("<abstract>","")
parsed_data= parsed_data.replace("</abstract>","")
parsed_data= parsed_data.replace("<title>","")
parsed_data= parsed_data.replace("</title>","")
parsed_data = parsed_data.replace("\n\n\n","")
parsing_tag = False
final_string = ""
tag_string= ""
current_tag_id = ""
current_tag_starting_pos = 0
current_tag_ending_pos= 0
entity_mapping_list=[]
for i in parsed_data:
if i=='<':
parsing_tag = True
if current_tag_id!="":
current_tag_ending_pos = len(final_string)-1
entity_mapping_list.append({"id":current_tag_id,
"char_start":current_tag_starting_pos,
"char_end":current_tag_ending_pos+1})
current_tag_id= ""
tag_string=""
elif i=='>':
parsing_tag = False
tag_string_split = tag_string.split('"')
if len(tag_string_split)>1:
current_tag_id= tag_string.split('"')[1]
current_tag_starting_pos = len(final_string)
else:
if parsing_tag!=True:
final_string = final_string + i
else:
tag_string = tag_string + i
return {"text_data":final_string, "entities":entity_mapping_list}
class Semeval2018Task7(datasets.GeneratorBasedBuilder):
"""
Semeval2018Task7 is a dataset for semantic relation extraction and classification in scientific paper abstracts
"""
VERSION = datasets.Version("1.1.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="Subtask_1_1", version=VERSION,
description="Relation classification on clean data"),
datasets.BuilderConfig(name="Subtask_1_2", version=VERSION,
description="Relation classification on noisy data"),
]
DEFAULT_CONFIG_NAME = "Subtask_1_1"
def _info(self):
class_labels = ["","USAGE", "RESULT", "MODEL-FEATURE", "PART_WHOLE", "TOPIC", "COMPARE"]
features = datasets.Features(
{
"id": datasets.Value("string"),
"title": datasets.Value("string"),
"abstract": datasets.Value("string"),
"entities": [
{
"id": datasets.Value("string"),
"char_start": datasets.Value("int32"),
"char_end": datasets.Value("int32")
}
],
"relation": [
{
"label": datasets.ClassLabel(names=class_labels),
"arg1": datasets.Value("string"),
"arg2": datasets.Value("string"),
"reverse": datasets.Value("bool")
}
]
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
# supervised_keys=("sentence", "label"),
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
urls = _URLS[self.config.name]
downloaded_files = dl_manager.download(urls)
print(downloaded_files)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"relation_filepath": downloaded_files['train']["relations"],
"text_filepath": downloaded_files['train']["text"],
}
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"relation_filepath": downloaded_files['test']["relations"],
"text_filepath": downloaded_files['test']["text"],
}
)]
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, relation_filepath, text_filepath):
# TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
with open(relation_filepath, encoding="utf-8") as f:
relations = []
text_id_to_relations_map= {}
for key, row in enumerate(f):
row_split = row.strip("\n").split("(")
use_case = row_split[0]
second_half = row_split[1].strip(")")
second_half_splits = second_half.split(",")
size = len(second_half_splits)
relation = {
"label": use_case,
"arg1": second_half_splits[0],
"arg2": second_half_splits[1],
"reverse": True if size == 3 else False
}
relations.append(relation)
arg_id = second_half_splits[0].split(".")[0]
if arg_id not in text_id_to_relations_map:
text_id_to_relations_map[arg_id] = [relation]
else:
text_id_to_relations_map[arg_id].append(relation)
#print("result", text_id_to_relations_map)
#for arg_id, values in text_id_to_relations_map.items():
#print(f"ID: {arg_id}")
# for value in values:
# (value)
doc2 = ET.parse(text_filepath)
root = doc2.getroot()
for child in root:
if child.find("title")==None:
continue
text_id = child.attrib
#print("text_id", text_id)
if child.find("abstract")==None:
continue
title = child.find("title").text
child_abstract = child.find("abstract")
abstract_text_and_entities = reading_entity_data(child.find("abstract"))
title_text_and_entities = reading_entity_data(child.find("title"))
text_relations = []
if text_id['id'] in text_id_to_relations_map:
text_relations = text_id_to_relations_map[text_id['id']]
yield text_id['id'], {
"id": text_id['id'],
"title": title_text_and_entities['text_data'],
"abstract": abstract_text_and_entities['text_data'],
"entities": abstract_text_and_entities['entities'] + title_text_and_entities['entities'],
"relation": text_relations
}
|