File size: 11,683 Bytes
ac9d2c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe5e5af
ac9d2c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
757e86e
 
 
 
 
 
 
ac9d2c0
 
 
 
 
757e86e
 
 
 
 
 
 
ac9d2c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe5e5af
 
ac9d2c0
 
 
 
 
 
 
 
fe5e5af
ac9d2c0
fe5e5af
 
 
ac9d2c0
fe5e5af
 
ac9d2c0
fe5e5af
 
 
 
 
ac9d2c0
 
fe5e5af
 
 
 
 
 
ac9d2c0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
# I am trying to understand to the following code. Do not use this for any purpose as I do not support this.
# Use the original source from https://huggingface.co./datasets/DFKI-SLT/science_ie/raw/main/science_ie.py


# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Semeval2018Task7 is a dataset that describes the first task on semantic relation extraction and classification in scientific paper abstracts"""  



import glob
import datasets
#from path lib import Path
from itertools import permutations
from spacy.lang.en import English
import xml.dom.minidom
import xml.etree.ElementTree as ET

# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@inproceedings{gabor-etal-2018-semeval,
    title = "{S}em{E}val-2018 Task 7: Semantic Relation Extraction and Classification in Scientific Papers",
    author = {G{\'a}bor, Kata  and
      Buscaldi, Davide  and
      Schumann, Anne-Kathrin  and
      QasemiZadeh, Behrang  and
      Zargayouna, Ha{\"\i}fa  and
      Charnois, Thierry},
    booktitle = "Proceedings of the 12th International Workshop on Semantic Evaluation",
    month = jun,
    year = "2018",
    address = "New Orleans, Louisiana",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/S18-1111",
    doi = "10.18653/v1/S18-1111",
    pages = "679--688",
    abstract = "This paper describes the first task on semantic relation extraction and classification in 
    scientific paper abstracts at SemEval 2018. The challenge focuses on domain-specific semantic relations 
    and includes three different subtasks. The subtasks were designed so as to compare and quantify the 
    effect of different pre-processing steps on the relation classification results. We expect the task to 
    be relevant for a broad range of researchers working on extracting specialized knowledge from domain 
    corpora, for example but not limited to scientific or bio-medical information extraction. The task 
    attracted a total of 32 participants, with 158 submissions across different scenarios.",
}
"""

# You can copy an official description
_DESCRIPTION = """\
This paper describes the first task on semantic relation extraction and classification in scientific paper
abstracts at SemEval 2018. The challenge focuses on domain-specific semantic relations and includes three 
different subtasks. The subtasks were designed so as to compare and quantify the effect of different
pre-processing steps on the relation classification results. We expect the task to be relevant for a broad 
range of researchers working on extracting specialized knowledge from domain corpora, for example but not 
limited to scientific or bio-medical information extraction. The task attracted a total of 32 participants, 
with 158 submissions across different scenarios.
"""

# Add a link to an official homepage for the dataset here
_HOMEPAGE = "https://github.com/gkata/SemEval2018Task7/tree/testing"

# Add the licence for the dataset here if you can find it
_LICENSE = ""

# Add link to the official dataset URLs here
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URLS = {
    "clean": {
        "train": {
            "relations": "https://raw.githubusercontent.com/gkata/SemEval2018Task7/testing/1.1.relations.txt",
            "text": "https://raw.githubusercontent.com/gkata/SemEval2018Task7/testing/1.1.text.xml",
        },
        "test": {
            "relations": "https://raw.githubusercontent.com/gkata/SemEval2018Task7/testing/1.1.test.relations.txt",
            "text": "https://raw.githubusercontent.com/gkata/SemEval2018Task7/testing/1.1.test.text.xml",
        },
    },
    "noisy": {
        "train": {
            "relations": "https://raw.githubusercontent.com/gkata/SemEval2018Task7/testing/1.2.relations.txt",
            "text": "https://raw.githubusercontent.com/gkata/SemEval2018Task7/testing/1.2.text.xml",
        },
        "test": {
            "relations": "https://raw.githubusercontent.com/gkata/SemEval2018Task7/testing/1.2.test.relations.txt",
            "text": "https://raw.githubusercontent.com/gkata/SemEval2018Task7/testing/1.2.test.text.xml",
        },
    }

}


def all_text_nodes(root):
    if root.text is not None:
        yield root.text
    for child in root:
        if child.tail is not None:
            yield child.tail


def reading_entity_data(string_conver):
  
  parsing_tag = False
  final_string = ""
  tag_string= ""
  current_tag_id = ""
  current_tag_starting_pos = 0
  current_tag_ending_pos= 0
  entity_mapping_list=[]

  for i in string_conver:
    if i=='<':
      parsing_tag = True
      if current_tag_id!="":
        current_tag_ending_pos = len(final_string)-1
        entity_mapping_list.append({"id":current_tag_id,
                                    "char_start":current_tag_starting_pos,
                                    "char_end":current_tag_ending_pos})
        current_tag_id= ""
        tag_string=""


    elif i=='>':
      parsing_tag = False
      tag_string_split = tag_string.split('"')
      if len(tag_string_split)>1:
        current_tag_id= tag_string.split('"')[1]
        current_tag_starting_pos = len(final_string)

    else:
      if parsing_tag!=True:
        final_string = final_string + i
      else:
        tag_string = tag_string + i

  return {"abstract":final_string, "entities":entity_mapping_list}




class Semeval2018Task7(datasets.GeneratorBasedBuilder):
    """
    Semeval2018Task7 is a dataset for semantic relation extraction and classification in scientific paper abstracts
    """

    VERSION = datasets.Version("1.1.0")

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(name="clean", version=VERSION,
                               description="Relation classification on clean data"),
        datasets.BuilderConfig(name="noisy", version=VERSION,
                               description="Relation classification on noisy data"),
    ]
    DEFAULT_CONFIG_NAME = "clean"

    def _info(self):
        class_labels = ["USAGE", "RESULT", "MODEL-FEATURE", "PART_WHOLE", "TOPIC", "COMPARE"]
        features = datasets.Features(
            {
                "id": datasets.Value("string"),
                "title": datasets.Value("string"),
                "abstract": datasets.Value("string"),
                "entities": [
                    {
                        "id": datasets.Value("string"),
                        "char_start": datasets.Value("int32"),
                        "char_end": datasets.Value("int32")
                    }
                ],
                "relation": [
                    {
                        "label": datasets.ClassLabel(names=class_labels),
                        "arg1": datasets.Value("string"),
                        "arg2": datasets.Value("string"),
                        "reverse": datasets.Value("bool")
                    }
                ]
            }
        )

        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=features,  # Here we define them above because they are different between the two configurations
            # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
            # specify them. They'll be used if as_supervised=True in builder.as_dataset.
            # supervised_keys=("sentence", "label"),
            # Homepage of the dataset for documentation
            homepage=_HOMEPAGE,
            # License for the dataset if available
            license=_LICENSE,
            # Citation for the dataset
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name

        # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
        # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
        # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
        urls = _URLS[self.config.name]
        downloaded_files = dl_manager.download(urls)
        print(downloaded_files)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "relation_filepath": downloaded_files[datasets.Split.TRAIN]["relations"],
                    "text_filepath": downloaded_files[datasets.Split.TRAIN]["text"],
                }

            )]
        # TODO: test split does not contain relations, how to do

    # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
    def _generate_examples(self, relation_filepath, text_filepath):
        # TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
        # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
        with open(relation_filepath, encoding="utf-8") as f:
            relations = []

            for key, row in enumerate(f):
                row_split = row.strip("\n").split("(")
                use_case = row_split[0]
                second_half = row_split[1].strip(")")
                second_half_splits = second_half.split(",")
                size = len(second_half_splits)
               
                relation = {
                    "label": use_case,
                    "arg1": second_half_splits[0],
                    "arg2": second_half_splits[1],
                    "reverse": True if size == 3 else False
                }
                relations.append(relation)

        doc2 = ET.parse(text_filepath)
        root = doc2.getroot()
        
        for child in root:
          if child.find("title")==None: 
            continue
          text_id = child.attrib

          if child.find("abstract")==None: 
            continue
          title = child.find("title").text
          child_abstract = child.find("abstract")
          
          prev=ET.tostring(child_abstract,"utf-8")
          prev= prev.decode('utf8').replace("b\'","")
          prev= prev.replace("<abstract>","")
          prev= prev.replace("</abstract>","")
          final_list= reading_entity_data(prev)
          
           
          yield text_id['id'], {
              "id": text_id['id'],
              "title": title,
              "abstract": final_list['abstract'],
              "entities": final_list['entities'],
              "relation": relations
            }