Update README.md
Browse files
README.md
CHANGED
@@ -47,3 +47,93 @@ configs:
|
|
47 |
- split: intents
|
48 |
path: intents/intents-*
|
49 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
- split: intents
|
48 |
path: intents/intents-*
|
49 |
---
|
50 |
+
|
51 |
+
# events
|
52 |
+
|
53 |
+
This is a text classification dataset. It is intended for machine learning research and experimentation.
|
54 |
+
|
55 |
+
This dataset is obtained via formatting another publicly available data to be compatible with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html).
|
56 |
+
|
57 |
+
## Usage
|
58 |
+
|
59 |
+
It is intended to be used with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html):
|
60 |
+
|
61 |
+
```python
|
62 |
+
from autointent import Dataset
|
63 |
+
banking77 = Dataset.from_datasets("AutoIntent/events")
|
64 |
+
```
|
65 |
+
|
66 |
+
## Source
|
67 |
+
|
68 |
+
This dataset is taken from `knowledgator/events_classification_biotech` and formatted with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html):
|
69 |
+
|
70 |
+
```python
|
71 |
+
"""Convert events dataset to autointent internal format and scheme."""
|
72 |
+
|
73 |
+
from datasets import Dataset as HFDataset
|
74 |
+
from datasets import load_dataset
|
75 |
+
|
76 |
+
from autointent import Dataset
|
77 |
+
from autointent.schemas import Intent, Sample
|
78 |
+
|
79 |
+
# these classes contain too few sampls
|
80 |
+
names_to_remove = [
|
81 |
+
"partnerships & alliances",
|
82 |
+
"patent publication",
|
83 |
+
"subsidiary establishment",
|
84 |
+
"department establishment",
|
85 |
+
]
|
86 |
+
|
87 |
+
def extract_intents_data(events_dataset: HFDataset) -> tuple[list[Intent], dict[str, int]]:
|
88 |
+
"""Extract intent names and assign ids to them."""
|
89 |
+
intent_names = sorted({name for intents in events_dataset["train"]["all_labels"] for name in intents})
|
90 |
+
for n in names_to_remove:
|
91 |
+
intent_names.remove(n)
|
92 |
+
name_to_id = {name: i for i, name in enumerate(intent_names)}
|
93 |
+
intents_data = [Intent(id=i,name=name) for i, name in enumerate(intent_names)]
|
94 |
+
return intents_data, name_to_id
|
95 |
+
|
96 |
+
|
97 |
+
def converting_mapping(example: dict, name_to_id: dict[str, int]) -> dict[str, str | list[int]]:
|
98 |
+
"""Extract utterance and label and drop the rest."""
|
99 |
+
return {
|
100 |
+
"utterance": example["content"],
|
101 |
+
"label": [
|
102 |
+
name_to_id[intent_name] for intent_name in example["all_labels"] if intent_name not in names_to_remove
|
103 |
+
],
|
104 |
+
}
|
105 |
+
|
106 |
+
|
107 |
+
def convert_events(events_split: HFDataset, name_to_id: dict[str, int]) -> list[Sample]:
|
108 |
+
"""Convert one split into desired format."""
|
109 |
+
events_split = events_split.map(
|
110 |
+
converting_mapping, remove_columns=events_split.features.keys(),
|
111 |
+
fn_kwargs={"name_to_id": name_to_id}
|
112 |
+
)
|
113 |
+
|
114 |
+
in_domain_samples = []
|
115 |
+
oos_samples = [] # actually this dataset doesn't contain oos_samples so this will stay empty
|
116 |
+
for sample in events_split.to_list():
|
117 |
+
if sample["utterance"] is None:
|
118 |
+
continue
|
119 |
+
if len(sample["label"]) == 0:
|
120 |
+
sample.pop("label")
|
121 |
+
oos_samples.append(sample)
|
122 |
+
else:
|
123 |
+
in_domain_samples.append(sample)
|
124 |
+
|
125 |
+
return [Sample(**sample) for sample in in_domain_samples + oos_samples]
|
126 |
+
|
127 |
+
if __name__ == "__main__":
|
128 |
+
# FYI: https://github.com/huggingface/datasets/issues/7248
|
129 |
+
events_dataset = load_dataset("knowledgator/events_classification_biotech", trust_remote_code=True)
|
130 |
+
|
131 |
+
intents_data, name_to_id = extract_intents_data(events_dataset)
|
132 |
+
|
133 |
+
train_samples = convert_events(events_dataset["train"], name_to_id)
|
134 |
+
test_samples = convert_events(events_dataset["test"], name_to_id)
|
135 |
+
|
136 |
+
events_converted = Dataset.from_dict(
|
137 |
+
{"train": train_samples, "test": test_samples, "intents": intents_data}
|
138 |
+
)
|
139 |
+
```
|