--- dataset_info: - config_name: default features: - name: utterance dtype: string - name: label dtype: int64 splits: - name: train num_bytes: 857605 num_examples: 15200 - name: validation num_bytes: 160686 num_examples: 3100 - name: test num_bytes: 287654 num_examples: 5500 download_size: 542584 dataset_size: 1305945 - config_name: intents features: - name: id dtype: int64 - name: name dtype: string - name: tags sequence: 'null' - name: regexp_full_match sequence: 'null' - name: regexp_partial_match sequence: 'null' - name: description dtype: 'null' splits: - name: intents num_bytes: 5368 num_examples: 150 download_size: 5519 dataset_size: 5368 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* - config_name: intents data_files: - split: intents path: intents/intents-* --- # clinc150 This is a text classification dataset. It is intended for machine learning research and experimentation. This dataset is obtained via formatting another publicly available data to be compatible with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html). ## Usage It is intended to be used with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html): ```python from autointent import Dataset banking77 = Dataset.from_datasets("AutoIntent/clinc150") ``` ## Source This dataset is taken from `cmaldona/All-Generalization-OOD-CLINC150` and formatted with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html): ```python # define util """Convert clincq50 dataset to autointent internal format and scheme.""" from datasets import Dataset as HFDataset from datasets import load_dataset from autointent import Dataset from autointent.schemas import Intent, Sample def extract_intents_data( clinc150_split: HFDataset, oos_intent_name: str = "ood" ) -> tuple[list[Intent], dict[str, int]]: """Extract intent names and assign ids to them.""" intent_names = sorted(clinc150_split.unique("labels")) oos_intent_id = intent_names.index(oos_intent_name) intent_names.pop(oos_intent_id) n_classes = len(intent_names) assert n_classes == 150 # noqa: PLR2004, S101 name_to_id = dict(zip(intent_names, range(n_classes), strict=False)) intents_data = [Intent(id=i, name=name) for name, i in name_to_id.items()] return intents_data, name_to_id def convert_clinc150( clinc150_split: HFDataset, name_to_id: dict[str, int], shots_per_intent: int | None = None, oos_intent_name: str = "ood", ) -> list[Sample]: """Convert one split into desired format.""" oos_samples = [] classwise_samples = [[] for _ in range(len(name_to_id))] n_unrecognized_labels = 0 for batch in clinc150_split.iter(batch_size=16, drop_last_batch=False): for txt, name in zip(batch["data"], batch["labels"], strict=False): if name == oos_intent_name: oos_samples.append(Sample(utterance=txt)) continue intent_id = name_to_id.get(name, None) if intent_id is None: n_unrecognized_labels += 1 continue target_list = classwise_samples[intent_id] if shots_per_intent is not None and len(target_list) >= shots_per_intent: continue target_list.append(Sample(utterance=txt, label=intent_id)) in_domain_samples = [sample for samples_from_single_class in classwise_samples for sample in samples_from_single_class] print(f"{len(in_domain_samples)=}") print(f"{len(oos_samples)=}") print(f"{n_unrecognized_labels=}\n") return in_domain_samples + oos_samples if __name__ == "__main__": clinc150 = load_dataset("cmaldona/All-Generalization-OOD-CLINC150") intents_data, name_to_id = extract_intents_data(clinc150["train"]) train_samples = convert_clinc150(clinc150["train"], name_to_id) validation_samples = convert_clinc150(clinc150["validation"], name_to_id) test_samples = convert_clinc150(clinc150["test"], name_to_id) clinc150_converted = Dataset.from_dict( {"train": train_samples, "validation": validation_samples, "test": test_samples, "intents": intents_data} ) ```