Update README.md
Browse files
README.md
CHANGED
@@ -52,3 +52,97 @@ configs:
|
|
52 |
- split: intents
|
53 |
path: intents/intents-*
|
54 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
- split: intents
|
53 |
path: intents/intents-*
|
54 |
---
|
55 |
+
|
56 |
+
# clinc150
|
57 |
+
|
58 |
+
This is a text classification dataset. It is intended for machine learning research and experimentation.
|
59 |
+
|
60 |
+
This dataset is obtained via formatting another publicly available data to be compatible with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html).
|
61 |
+
|
62 |
+
## Usage
|
63 |
+
|
64 |
+
It is intended to be used with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html):
|
65 |
+
|
66 |
+
```python
|
67 |
+
from autointent import Dataset
|
68 |
+
banking77 = Dataset.from_datasets("AutoIntent/clinc150")
|
69 |
+
```
|
70 |
+
|
71 |
+
## Source
|
72 |
+
|
73 |
+
This dataset is taken from `cmaldona/All-Generalization-OOD-CLINC150` and formatted with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html):
|
74 |
+
|
75 |
+
```python
|
76 |
+
# define util
|
77 |
+
"""Convert clincq50 dataset to autointent internal format and scheme."""
|
78 |
+
|
79 |
+
from datasets import Dataset as HFDataset
|
80 |
+
from datasets import load_dataset
|
81 |
+
|
82 |
+
from autointent import Dataset
|
83 |
+
from autointent.schemas import Intent, Sample
|
84 |
+
|
85 |
+
|
86 |
+
def extract_intents_data(
|
87 |
+
clinc150_split: HFDataset, oos_intent_name: str = "ood"
|
88 |
+
) -> tuple[list[Intent], dict[str, int]]:
|
89 |
+
"""Extract intent names and assign ids to them."""
|
90 |
+
intent_names = sorted(clinc150_split.unique("labels"))
|
91 |
+
oos_intent_id = intent_names.index(oos_intent_name)
|
92 |
+
intent_names.pop(oos_intent_id)
|
93 |
+
|
94 |
+
n_classes = len(intent_names)
|
95 |
+
assert n_classes == 150 # noqa: PLR2004, S101
|
96 |
+
|
97 |
+
name_to_id = dict(zip(intent_names, range(n_classes), strict=False))
|
98 |
+
intents_data = [Intent(id=i, name=name) for name, i in name_to_id.items()]
|
99 |
+
return intents_data, name_to_id
|
100 |
+
|
101 |
+
|
102 |
+
def convert_clinc150(
|
103 |
+
clinc150_split: HFDataset,
|
104 |
+
name_to_id: dict[str, int],
|
105 |
+
shots_per_intent: int | None = None,
|
106 |
+
oos_intent_name: str = "ood",
|
107 |
+
) -> list[Sample]:
|
108 |
+
"""Convert one split into desired format."""
|
109 |
+
oos_samples = []
|
110 |
+
classwise_samples = [[] for _ in range(len(name_to_id))]
|
111 |
+
n_unrecognized_labels = 0
|
112 |
+
|
113 |
+
for batch in clinc150_split.iter(batch_size=16, drop_last_batch=False):
|
114 |
+
for txt, name in zip(batch["data"], batch["labels"], strict=False):
|
115 |
+
if name == oos_intent_name:
|
116 |
+
oos_samples.append(Sample(utterance=txt))
|
117 |
+
continue
|
118 |
+
intent_id = name_to_id.get(name, None)
|
119 |
+
if intent_id is None:
|
120 |
+
n_unrecognized_labels += 1
|
121 |
+
continue
|
122 |
+
target_list = classwise_samples[intent_id]
|
123 |
+
if shots_per_intent is not None and len(target_list) >= shots_per_intent:
|
124 |
+
continue
|
125 |
+
target_list.append(Sample(utterance=txt, label=intent_id))
|
126 |
+
|
127 |
+
in_domain_samples = [sample for samples_from_single_class in classwise_samples for sample in samples_from_single_class]
|
128 |
+
|
129 |
+
print(f"{len(in_domain_samples)=}")
|
130 |
+
print(f"{len(oos_samples)=}")
|
131 |
+
print(f"{n_unrecognized_labels=}\n")
|
132 |
+
|
133 |
+
return in_domain_samples + oos_samples
|
134 |
+
|
135 |
+
|
136 |
+
if __name__ == "__main__":
|
137 |
+
clinc150 = load_dataset("cmaldona/All-Generalization-OOD-CLINC150")
|
138 |
+
|
139 |
+
intents_data, name_to_id = extract_intents_data(clinc150["train"])
|
140 |
+
|
141 |
+
train_samples = convert_clinc150(clinc150["train"], name_to_id)
|
142 |
+
validation_samples = convert_clinc150(clinc150["validation"], name_to_id)
|
143 |
+
test_samples = convert_clinc150(clinc150["test"], name_to_id)
|
144 |
+
|
145 |
+
clinc150_converted = Dataset.from_dict(
|
146 |
+
{"train": train_samples, "validation": validation_samples, "test": test_samples, "intents": intents_data}
|
147 |
+
)
|
148 |
+
```
|