The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code:   DatasetGenerationCastError
Exception:    DatasetGenerationCastError
Message:      An error occurred while generating the dataset

All the data files must have the same columns, but at some point there are 1 new columns ({'versions'})

This happened while the json dataset builder was generating data using

hf://datasets/AlyxTeam/results/demo-leaderboard/gpt2-demo/results_2023-11-22 15:46:20.425378.json (at revision c71b8ed6677eea0cf467720bf91e9e762f9a97b1)

Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 2013, in _prepare_split_single
                  writer.write_table(table)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 585, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2302, in table_cast
                  return cast_table_to_schema(table, schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2256, in cast_table_to_schema
                  raise CastError(
              datasets.table.CastError: Couldn't cast
              results: struct<anli_r1: struct<acc: double, acc_stderr: double>, logiqa: struct<acc: double, acc_stderr: double, acc_norm: double, acc_norm_stderr: double>>
                child 0, anli_r1: struct<acc: double, acc_stderr: double>
                    child 0, acc: double
                    child 1, acc_stderr: double
                child 1, logiqa: struct<acc: double, acc_stderr: double, acc_norm: double, acc_norm_stderr: double>
                    child 0, acc: double
                    child 1, acc_stderr: double
                    child 2, acc_norm: double
                    child 3, acc_norm_stderr: double
              versions: struct<anli_r1: int64, logiqa: int64>
                child 0, anli_r1: int64
                child 1, logiqa: int64
              config: struct<model: string, model_args: string, num_fewshot: int64, batch_size: int64, batch_sizes: list<item: null>, device: string, no_cache: bool, limit: int64, bootstrap_iters: int64, description_dict: null, model_dtype: string, model_name: string, model_sha: string>
                child 0, model: string
                child 1, model_args: string
                child 2, num_fewshot: int64
                child 3, batch_size: int64
                child 4, batch_sizes: list<item: null>
                    child 0, item: null
                child 5, device: string
                child 6, no_cache: bool
                child 7, limit: int64
                child 8, bootstrap_iters: int64
                child 9, description_dict: null
                child 10, model_dtype: string
                child 11, model_name: string
                child 12, model_sha: string
              to
              {'config': {'model_dtype': Value(dtype='string', id=None), 'model_name': Value(dtype='string', id=None), 'model_sha': Value(dtype='string', id=None)}, 'results': {'anli_r1': {'acc': Value(dtype='int64', id=None)}, 'logiqa': {'acc_norm': Value(dtype='float64', id=None)}}}
              because column names don't match
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1396, in compute_config_parquet_and_info_response
                  parquet_operations = convert_to_parquet(builder)
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1045, in convert_to_parquet
                  builder.download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1029, in download_and_prepare
                  self._download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1124, in _download_and_prepare
                  self._prepare_split(split_generator, **prepare_split_kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1884, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 2015, in _prepare_split_single
                  raise DatasetGenerationCastError.from_cast_error(
              datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
              
              All the data files must have the same columns, but at some point there are 1 new columns ({'versions'})
              
              This happened while the json dataset builder was generating data using
              
              hf://datasets/AlyxTeam/results/demo-leaderboard/gpt2-demo/results_2023-11-22 15:46:20.425378.json (at revision c71b8ed6677eea0cf467720bf91e9e762f9a97b1)
              
              Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

config
dict
results
dict
versions
dict
group_subtasks
dict
configs
dict
n-shot
dict
higher_is_better
dict
n-samples
dict
git_hash
string
date
float64
pretty_env_info
string
transformers_version
string
upper_git_hash
null
eot_token_id
int64
max_length
int64
{ "model_dtype": "torch.float16", "model_name": "demo-leaderboard/gpt2-demo", "model_sha": "ac3299b02780836378b9e1e68c6eead546e89f90" }
{ "anli_r1": { "acc": 0 }, "logiqa": { "acc_norm": 0.9 } }
null
null
null
null
null
null
null
null
null
null
null
null
null
{ "model": "hf-causal-experimental", "model_args": "pretrained=demo-leaderboard/gpt2-demo,revision=main,dtype=bfloat16", "num_fewshot": 0, "batch_size": 1, "batch_sizes": [], "device": "cpu", "no_cache": true, "limit": 20, "bootstrap_iters": 100000, "description_dict": null, "model_dtype": "bfloat16", "model_name": "demo-leaderboard/gpt2-demo", "model_sha": "main" }
{ "anli_r1": { "acc": 0.4, "acc_stderr": 0.11239029738980327 }, "logiqa": { "acc": 0.35, "acc_stderr": 0.10942433098048308, "acc_norm": 0.3, "acc_norm_stderr": 0.10513149660756933 } }
{ "anli_r1": 0, "logiqa": 0 }
null
null
null
null
null
null
null
null
null
null
null
null
{ "model": "hf", "model_args": "pretrained=microsoft/Phi-3.5-mini-instruct,revision=main,dtype=bfloat16", "model_num_parameters": 3821079552, "model_dtype": "bfloat16", "model_revision": "main", "model_sha": "main", "batch_size": 64, "batch_sizes": [ 64 ], "device": "cpu", "use_cache": null, "limit": 20, "bootstrap_iters": 100000, "gen_kwargs": null, "random_seed": 0, "numpy_seed": 1234, "torch_seed": 1234, "fewshot_seed": 1234, "model_name": "microsoft/Phi-3.5-mini-instruct" }
{ "logiqa": { "acc": 0.55, "acc_stderr": 0.11413288653790232, "acc_norm": 0.45, "acc_norm_stderr": 0.11413288653790232, "alias": "logiqa" }, "anli_r1": { "acc": 0.4, "acc_stderr": 0.11239029738980327, "alias": "anli_r1" } }
{ "anli_r1": 1, "logiqa": 1 }
{ "anli_r1": [], "logiqa": [] }
{ "anli_r1": { "task": "anli_r1", "group": [ "anli" ], "dataset_path": "anli", "training_split": "train_r1", "validation_split": "dev_r1", "test_split": "test_r1", "doc_to_text": "{{premise}}\nQuestion: {{hypothesis}} True, False, or Neither?\nAnswer:", "doc_to_target": "{{['True', 'Neither', 'False'][label]}}", "doc_to_choice": [ "True", "Neither", "False" ], "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": true, "doc_to_decontamination_query": "premise", "metadata": { "version": 1 } }, "logiqa": { "task": "logiqa", "dataset_path": "EleutherAI/logiqa", "dataset_name": "logiqa", "dataset_kwargs": { "trust_remote_code": true }, "training_split": "train", "validation_split": "validation", "test_split": "test", "doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Passage: <passage>\n Question: <question>\n Choices:\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n Answer:\n \"\"\"\n choices = [\"a\", \"b\", \"c\", \"d\"]\n prompt = \"Passage: \" + doc[\"context\"] + \"\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\nChoices:\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"Answer:\"\n return prompt\n", "doc_to_target": "def doc_to_target(doc) -> int:\n choices = [\"a\", \"b\", \"c\", \"d\"]\n return choices.index(doc[\"label\"].strip())\n", "doc_to_choice": "{{options}}", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true }, { "metric": "acc_norm", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": true, "doc_to_decontamination_query": "{{context}}", "metadata": { "version": 1 } } }
{ "anli_r1": 0, "logiqa": 0 }
{ "anli_r1": { "acc": true }, "logiqa": { "acc": true, "acc_norm": true } }
{ "logiqa": { "original": 651, "effective": 20 }, "anli_r1": { "original": 1000, "effective": 20 } }
08eb026
1,726,788,426.682271
CUDA must not be initialized in the main process on Spaces with Stateless GPU environment. You can look at this Stacktrace to find out which part of your code triggered a CUDA init
4.44.2
null
32,000
131,072