File size: 3,196 Bytes
0a4de37
 
6c04aad
 
 
 
 
 
 
 
0a4de37
978fe26
6c04aad
 
 
 
 
27cc3ce
6c04aad
c655694
 
27cc3ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c10ad93
27cc3ce
 
 
 
 
c10ad93
27cc3ce
 
 
 
 
 
c10ad93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27cc3ce
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
---
license: cc-by-4.0
task_categories:
- video-classification
- visual-question-answering
language:
- en
pretty_name: 'ANAKIN: manipulated videos and mask annotations'
size_categories:
- 1K<n<10K
---
[arxiv](https://arxiv.org/abs/2303.13193)
# ANAKIN

ANAKIN is a dataset of mANipulated videos and mAsK annotatIoNs.
To our best knowledge, ANAKIN is the first real-world dataset of professionally edited video clips,
paired with source videos, edit descriptions and binary mask annotations of the edited regions.
ANAKIN consists of 1023 videos in total, including 352 edited videos from the
[VideoSham](https://github.com/adobe-research/VideoSham-dataset)
dataset plus 671 new videos collected from the Vimeo platform.

## Data Format
| Label     |                                   Description                                   |
|----------|-------------------------------------------------------------------------------|
| video-id    |                                    Video ID                                     |
|full* | Full length original video |
|trimmed | Short clip trimmed from `full` |
|edited| Manipulated version of `trimmed`|
|masks*| Per-frame binary masks, annotating the manipulation|
| start-time* |                        Trim beginning time (in seconds)                         | 
| end-time*  |                           Trim end time (in seconds)                            | 
|   task    |                         Task given to the video editor                          | 
|manipulation-type| One of the 5 manipulation types: splicing, inpainting, swap, audio, frame-level |
|  editor-id    |                                    Editor ID                                    | 

*There are several subset configurations available.
The choice depends on whether you need to download full length videos and/or you only need the videos with masks available.
`start-time` and `end-time` will be returned for subset configs with full videos in them.
| config     | full | masks | train/val/test |
| ---------- | ---- | ----- | -------------- |
| all        | yes  | maybe | 681/98/195     |
| no-full    | no   | maybe | 716/102/205    |
| has-masks  | no   | yes   | 297/43/85      |
| full-masks | yes  | yes   | 297/43/85      |


## Example
The data can either be downloaded or [streamed](https://huggingface.co./docs/datasets/stream).

### Downloaded
```python
from datasets import load_dataset
from torchvision.io import read_video

config = 'no-full' # ['all', 'no-full', 'has-masks', 'full-masks']
dataset = load_dataset("AlexBlck/ANAKIN", config, nproc=8)

for sample in dataset['train']: # ['train', 'validation', 'test']
    trimmed_video, trimmed_audio, _ = read_video(sample['trimmed'], output_format="TCHW")
    edited_video, edited_audio, _ = read_video(sample['edited'], output_format="TCHW")
    masks = sample['masks']
    print(sample.keys())
```

### Streamed
```python
from datasets import load_dataset
import cv2

dataset = load_dataset("AlexBlck/ANAKIN", streaming=True)

sample = next(iter(dataset['train'])) # ['train', 'validation', 'test']
cap = cv2.VideoCapture(sample['trimmed'])

while(cap.isOpened()):
    ret, frame = cap.read()
    # ...
```