AilinWhiteNight commited on
Commit
5c75fd7
1 Parent(s): 2e2a2b7

upload base information

Browse files
Files changed (1) hide show
  1. README.md +141 -0
README.md CHANGED
@@ -29,3 +29,144 @@ configs:
29
  - split: test
30
  path: data/test-*
31
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
  - split: test
30
  path: data/test-*
31
  ---
32
+ # Dataset Detail
33
+ this dataset is processed from 3 source of thai dataset consist of
34
+ - miracl/miracl
35
+ - facebook/xnli
36
+ - castorini/mr-tydi
37
+ - castorini/mr-tydi-corpus
38
+ ## processing script
39
+ here is the precessing script I use
40
+ ### miracl/miracl
41
+ ```python
42
+ def create_miracl_datasets(datasets):
43
+ """
44
+ nothing just extract texts
45
+ """
46
+ datasets_ = {
47
+ 'query': [],
48
+ 'positive_passages': [],
49
+ 'negative_passages': [],
50
+ }
51
+ for data in tqdm(datasets):
52
+ datasets_['query'].append(data['query'])
53
+ negative_passages = []
54
+ for negative_passage in data['negative_passages']:
55
+ negative_passages.append(negative_passage['text'])
56
+ datasets_['negative_passages'].append(negative_passages)
57
+ positive_passages = []
58
+ for positive_passage in data['positive_passages']:
59
+ positive_passages.append(positive_passage['text'])
60
+ datasets_['positive_passages'].append(positive_passages)
61
+ return Dataset.from_dict(datasets_)
62
+ ```
63
+ ratio
64
+ ```python
65
+ DatasetDict({
66
+ train: Dataset({
67
+ features: ['query', 'positive_passages', 'negative_passages'],
68
+ num_rows: 2972
69
+ })
70
+ eval: Dataset({
71
+ features: ['query', 'positive_passages', 'negative_passages'],
72
+ num_rows: 366
73
+ })
74
+ test: Dataset({
75
+ features: ['query', 'positive_passages', 'negative_passages'],
76
+ num_rows: 367
77
+ })
78
+ })
79
+ ```
80
+
81
+ ### facebook/xnli
82
+ ```python
83
+ def create_xnli_datasets(datasets):
84
+ """
85
+ transform format of ['premise', 'hypothesis', 'label'] to ['query', 'positive_passages', 'negative_passages']
86
+ using contradiction as negative passage pair and
87
+ neutral, entailment -> possitive passage pair
88
+ premise as passage (premise -> evidence)
89
+ hypothesis as query (hypothesis so called question so can be used as query)
90
+ """
91
+ datasets_ = {
92
+ 'query': [],
93
+ 'positive_passages': [],
94
+ 'negative_passages': []
95
+ }
96
+ for data in tqdm(datasets):
97
+ datasets_['query'].append(data['premise'])
98
+ if data['label'] == 'contradiction':
99
+ datasets_['positive_passages'].append([])
100
+ datasets_['negative_passages'].append([data['hypothesis']])
101
+ elif data['label'] == 'neutral' or 'entailment':
102
+ datasets_['positive_passages'].append([data['hypothesis']])
103
+ datasets_['negative_passages'].append([])
104
+ return Dataset.from_dict(datasets_)
105
+ ```
106
+ ratio
107
+ ```python
108
+ DatasetDict({
109
+ train: Dataset({
110
+ features: ['query', 'positive_passages', 'negative_passages'],
111
+ num_rows: 392702
112
+ })
113
+ eval: Dataset({
114
+ features: ['query', 'positive_passages', 'negative_passages'],
115
+ num_rows: 2490
116
+ })
117
+ test: Dataset({
118
+ features: ['query', 'positive_passages', 'negative_passages'],
119
+ num_rows: 5010
120
+ })
121
+ })
122
+ ```
123
+
124
+ ### castorini/mr-tydi
125
+ ```python
126
+ def create_tydi_datasets(datasets, corpus, train = False):
127
+ """
128
+ both dev, test set have only docid which may can be retrieve from the corpus
129
+ """
130
+ cor_df = corpus.to_pandas()
131
+ datasets_ = {
132
+ 'query': [],
133
+ 'positive_passages': [],
134
+ 'negative_passages': [],
135
+ }
136
+ for data in tqdm(datasets):
137
+ datasets_['query'].append(data['query'])
138
+ if train:
139
+ negative_passages = []
140
+ for negative_passage in data['negative_passages']:
141
+ negative_passages.append(negative_passage['text'])
142
+ datasets_['negative_passages'].append(negative_passages)
143
+ else:
144
+ datasets_['negative_passages'].append([])
145
+ positive_passages = []
146
+ for positive_passage in data['positive_passages']:
147
+ search_value = positive_passage['docid']
148
+ text = cor_df[cor_df["docid"] == search_value].text.values[0]
149
+ # if text.empty:
150
+ # continue
151
+ positive_passages.append(text)
152
+ datasets_['positive_passages'].append(positive_passages)
153
+ return Dataset.from_dict(datasets_)
154
+ ```
155
+
156
+ ratio
157
+ ```python
158
+ DatasetDict({
159
+ train: Dataset({
160
+ features: ['query_id', 'query', 'positive_passages', 'negative_passages'],
161
+ num_rows: 3319
162
+ })
163
+ dev: Dataset({
164
+ features: ['query_id', 'query', 'positive_passages', 'negative_passages'],
165
+ num_rows: 807
166
+ })
167
+ test: Dataset({
168
+ features: ['query_id', 'query', 'positive_passages', 'negative_passages'],
169
+ num_rows: 1190
170
+ })
171
+ })
172
+ ```