|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""PIAF Question Answering Dataset""" |
|
|
|
|
|
import json |
|
|
|
import datasets |
|
from datasets.tasks import QuestionAnsweringExtractive |
|
|
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
|
|
_CITATION = """\ |
|
@InProceedings{keraron-EtAl:2020:LREC, |
|
author = {Keraron, Rachel and Lancrenon, Guillaume and Bras, Mathilde and Allary, Frédéric and Moyse, Gilles and Scialom, Thomas and Soriano-Morales, Edmundo-Pavel and Staiano, Jacopo}, |
|
title = {Project PIAF: Building a Native French Question-Answering Dataset}, |
|
booktitle = {Proceedings of The 12th Language Resources and Evaluation Conference}, |
|
month = {May}, |
|
year = {2020}, |
|
address = {Marseille, France}, |
|
publisher = {European Language Resources Association}, |
|
pages = {5483--5492}, |
|
abstract = {Motivated by the lack of data for non-English languages, in particular for the evaluation of downstream tasks such as Question Answering, we present a participatory effort to collect a native French Question Answering Dataset. Furthermore, we describe and publicly release the annotation tool developed for our collection effort, along with the data obtained and preliminary baselines.}, |
|
url = {https://www.aclweb.org/anthology/2020.lrec-1.673} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
Piaf is a reading comprehension \ |
|
dataset. This version, published in February 2020, contains 3835 questions on French Wikipedia. |
|
""" |
|
|
|
_URLS = {"train": "https://github.com/etalab-ia/piaf-code/raw/master/piaf-v1.0.json"} |
|
|
|
|
|
class PiafConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for PIAF.""" |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig for PIAF. |
|
|
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(PiafConfig, self).__init__(**kwargs) |
|
|
|
|
|
class Piaf(datasets.GeneratorBasedBuilder): |
|
"""The Piaf Question Answering Dataset. Version 1.0.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
PiafConfig( |
|
name="plain_text", |
|
version=datasets.Version("1.0.0", ""), |
|
description="Plain text", |
|
), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"title": datasets.Value("string"), |
|
"context": datasets.Value("string"), |
|
"question": datasets.Value("string"), |
|
"answers": datasets.features.Sequence( |
|
{ |
|
"text": datasets.Value("string"), |
|
"answer_start": datasets.Value("int32"), |
|
} |
|
), |
|
} |
|
), |
|
|
|
|
|
supervised_keys=None, |
|
homepage="https://piaf.etalab.studio", |
|
citation=_CITATION, |
|
task_templates=[ |
|
QuestionAnsweringExtractive( |
|
question_column="question", context_column="context", answers_column="answers" |
|
) |
|
], |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
urls_to_download = _URLS |
|
downloaded_files = dl_manager.download_and_extract(urls_to_download) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
"""This function returns the examples in the raw (text) form.""" |
|
logger.info("generating examples from = %s", filepath) |
|
with open(filepath, encoding="utf-8") as f: |
|
dataset = json.load(f) |
|
for article in dataset["data"]: |
|
title = article.get("title", "").strip() |
|
for paragraph in article["paragraphs"]: |
|
context = paragraph["context"].strip() |
|
for qa in paragraph["qas"]: |
|
question = qa["question"].strip() |
|
id_ = qa["id"] |
|
|
|
answer_starts = [answer["answer_start"] for answer in qa["answers"]] |
|
answers = [answer["text"].strip() for answer in qa["answers"]] |
|
|
|
|
|
|
|
yield id_, { |
|
"title": title, |
|
"context": context, |
|
"question": question, |
|
"id": id_, |
|
"answers": { |
|
"answer_start": answer_starts, |
|
"text": answers, |
|
}, |
|
} |
|
|