File size: 8,406 Bytes
1592fcb e8b8a68 1592fcb cc4769c 2853ae7 1592fcb 2853ae7 cc4769c 2853ae7 cc4769c 2853ae7 cc4769c 1592fcb cc4769c 1592fcb cc4769c 1592fcb cc4769c 1592fcb cc4769c 1592fcb cc4769c 73d2daf cc4769c 1592fcb cc4769c 1592fcb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
---
configs:
- config_name: law_knowledge_prob
data_files:
- split: test
path: test.jsonl
task_categories:
- text-classification
- question-answering
- zero-shot-classification
language:
- en
tags:
- legal
---
# Adapting LLMs to Domains via Continual Pre-Training (ICLR 2024)
This repo contains the **Law Knowledge Probing dataset** used in our paper [Adapting Large Language Models via Reading Comprehension](https://huggingface.co./papers/2309.09530).
We explore **continued pre-training on domain-specific corpora** for large language models. While this approach enriches LLMs with domain knowledge, it significantly hurts their prompting ability for question answering. Inspired by human learning via reading comprehension, we propose a simple method to **transform large-scale pre-training corpora into reading comprehension texts**, consistently improving prompting performance across tasks in biomedicine, finance, and law domains. **Our 7B model competes with much larger domain-specific models like BloombergGPT-50B**.
### [2024/11/29] 🤗 Introduce the multimodal version of AdaptLLM at [AdaMLLM](https://huggingface.co./AdaptLLM/Adapt-MLLM-to-Domains), for adapting MLLMs to domains 🤗
**************************** **Updates** ****************************
* 2024/11/29: Released [AdaMLLM](https://huggingface.co./AdaptLLM/Adapt-MLLM-to-Domains) for adapting MLLMs to domains
* 2024/9/20: Our [research paper for Instruction-Pretrain](https://huggingface.co./papers/2406.14491) has been accepted by EMNLP 2024
* 2024/8/29: Updated [guidelines](https://huggingface.co./datasets/AdaptLLM/finance-tasks) on evaluating any 🤗Huggingface models on the domain-specific tasks
* 2024/6/22: Released the [benchmarking code](https://github.com/microsoft/LMOps/tree/main/adaptllm)
* 2024/6/21: Released the general version of AdaptLLM at [Instruction-Pretrain](https://huggingface.co./instruction-pretrain)
* 2024/4/2: Released the [raw data splits (train and test)](https://huggingface.co./datasets/AdaptLLM/ConvFinQA) of all the evaluation datasets
* 2024/1/16: Our [research paper for AdaptLLM](https://huggingface.co./papers/2309.09530) has been accepted by ICLR 2024
* 2023/12/19: Released our [13B base models](https://huggingface.co./AdaptLLM/law-LLM-13B) developed from LLaMA-1-13B
* 2023/12/8: Released our [chat models](https://huggingface.co./AdaptLLM/law-chat) developed from LLaMA-2-Chat-7B
* 2023/9/18: Released our [paper](https://huggingface.co./papers/2309.09530), [code](https://github.com/microsoft/LMOps), [data](https://huggingface.co./datasets/AdaptLLM/law-tasks), and [base models](https://huggingface.co./AdaptLLM/law-LLM) developed from LLaMA-1-7B
## 1. Domain-Specific Models
### LLaMA-1-7B
In our paper, we develop three domain-specific models from LLaMA-1-7B, which are also available in Huggingface: [Biomedicine-LLM](https://huggingface.co./AdaptLLM/medicine-LLM), [Finance-LLM](https://huggingface.co./AdaptLLM/finance-LLM) and [Law-LLM](https://huggingface.co./AdaptLLM/law-LLM), the performances of our AdaptLLM compared to other domain-specific LLMs are:
<p align='center'>
<img src="https://cdn-uploads.huggingface.co/production/uploads/650801ced5578ef7e20b33d4/6efPwitFgy-pLTzvccdcP.png" width="700">
</p>
### LLaMA-1-13B
Moreover, we scale up our base model to LLaMA-1-13B to see if **our method is similarly effective for larger-scale models**, and the results are consistently positive too: [Biomedicine-LLM-13B](https://huggingface.co./AdaptLLM/medicine-LLM-13B), [Finance-LLM-13B](https://huggingface.co./AdaptLLM/finance-LLM-13B) and [Law-LLM-13B](https://huggingface.co./AdaptLLM/law-LLM-13B).
### LLaMA-2-Chat
Our method is also effective for aligned models! LLaMA-2-Chat requires a [specific data format](https://huggingface.co./blog/llama2#how-to-prompt-llama-2), and our **reading comprehension can perfectly fit the data format** by transforming the reading comprehension into a multi-turn conversation. We have also open-sourced chat models in different domains: [Biomedicine-Chat](https://huggingface.co./AdaptLLM/medicine-chat), [Finance-Chat](https://huggingface.co./AdaptLLM/finance-chat) and [Law-Chat](https://huggingface.co./AdaptLLM/law-chat).
### LLaMA-3-8B (💡New!)
In our recent research on [Instruction-Pretrain](https://huggingface.co./papers/2406.14491), we developed a context-based instruction synthesizer to augment the raw corpora with instruction-response pairs, **enabling Llama3-8B to be comparable to or even outperform Llama3-70B**: [Finance-Llama3-8B](https://huggingface.co./instruction-pretrain/finance-Llama3-8B), [Biomedicine-Llama3-8B](https://huggingface.co./instruction-pretrain/medicine-Llama3-8B).
## 2. Domain-Specific Tasks
### Pre-templatized Testing Splits
To easily reproduce our prompting results, we have uploaded the filled-in zero/few-shot input instructions and output completions of the test each domain-specific task: [biomedicine-tasks](https://huggingface.co./datasets/AdaptLLM/medicine-tasks), [finance-tasks](https://huggingface.co./datasets/AdaptLLM/finance-tasks), and [law-tasks](https://huggingface.co./datasets/AdaptLLM/law-tasks).
Note: those filled-in instructions are specifically tailored for models before alignment and do NOT fit for the specific data format required for chat models.
### Evaluating Any Huggingface LMs on Domain-Specific Tasks (💡New!)
You can use the following script to reproduce our results and evaluate any other Huggingface models on domain-specific tasks. Note that the script is NOT applicable to models that require specific prompt templates (e.g., Llama2-chat, Llama3-Instruct).
1). **Set Up Dependencies**
```bash
git clone https://github.com/microsoft/LMOps
cd LMOps/adaptllm
pip install -r requirements.txt
```
2). **Evaluate the Model**
```bash
# Select the domain from ['biomedicine', 'finance', 'law']
DOMAIN='law'
# Specify any Huggingface model name (Not applicable to chat models)
MODEL='AdaptLLM/law-LLM'
# Model parallelization:
# - Set MODEL_PARALLEL=False if the model fits on a single GPU.
# We observe that LMs smaller than 10B always meet this requirement.
# - Set MODEL_PARALLEL=True if the model is too large and encounters OOM on a single GPU.
MODEL_PARALLEL=False
# Choose the number of GPUs from [1, 2, 4, 8]
N_GPU=1
# Whether to add a BOS token at the beginning of the prompt input:
# - Set to False for AdaptLLM.
# - Set to True for instruction-pretrain models.
# If unsure, we recommend setting it to False, as this is suitable for most LMs.
add_bos_token=False
# Run the evaluation script
bash scripts/inference.sh ${DOMAIN} ${MODEL} ${add_bos_token} ${MODEL_PARALLEL} ${N_GPU}
```
### Raw Datasets
We have also uploaded the raw training and testing splits, for facilitating fine-tuning or other usages: [ChemProt](https://huggingface.co./datasets/AdaptLLM/ChemProt), [RCT](https://huggingface.co./datasets/AdaptLLM/RCT), [ConvFinQA](https://huggingface.co./datasets/AdaptLLM/ConvFinQA), [FiQA_SA](https://huggingface.co./datasets/AdaptLLM/FiQA_SA), [Headline](https://huggingface.co./datasets/AdaptLLM/Headline), [NER](https://huggingface.co./datasets/AdaptLLM/NER), [FPB](https://huggingface.co./datasets/AdaptLLM/FPB)
### Domain Knowledge Probing
Our pre-processed knowledge probing datasets are available at: [med_knowledge_prob](https://huggingface.co./datasets/AdaptLLM/med_knowledge_prob) and [law_knowledge_prob](https://huggingface.co./datasets/AdaptLLM/law_knowledge_prob)
## Citation
If you find our work helpful, please cite us:
```bibtex
@inproceedings{
cheng2024adapting,
title={Adapting Large Language Models via Reading Comprehension},
author={Daixuan Cheng and Shaohan Huang and Furu Wei},
booktitle={The Twelfth International Conference on Learning Representations},
year={2024},
url={https://openreview.net/forum?id=y886UXPEZ0}
}
```
and the original dataset:
```bibtex
@inproceedings{LEDGAR,
author = {Don Tuggener and
Pius von D{\"{a}}niken and
Thomas Peetz and
Mark Cieliebak},
title = {{LEDGAR:} {A} Large-Scale Multi-label Corpus for Text Classification
of Legal Provisions in Contracts},
booktitle = {{LREC}},
pages = {1235--1241},
publisher = {European Language Resources Association},
year = {2020}
}
``` |