File size: 18,380 Bytes
fec5451
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "!pip3 install pandas\n",
    "!pip3 install numpy"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/home/ba-anandhus/Documents/fine tuning/fine/lib/python3.8/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
      "  from .autonotebook import tqdm as notebook_tqdm\n"
     ]
    }
   ],
   "source": [
    "import pandas as pd\n",
    "import librosa\n",
    "from scipy.io import wavfile\n",
    "from transformers import Wav2Vec2ForCTC, Wav2Vec2Tokenizer, Wav2Vec2CTCTokenizer\n",
    "import numpy\n",
    "import torch\n",
    "import processor\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 29,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "The tokenizer class you load from this checkpoint is not the same type as the class this function is called from. It may result in unexpected tokenization. \n",
      "The tokenizer class you load from this checkpoint is 'Wav2Vec2CTCTokenizer'. \n",
      "The class this function is called from is 'Wav2Vec2Tokenizer'.\n",
      "/home/ba-anandhus/Documents/fine tuning/fine/lib/python3.8/site-packages/transformers/models/wav2vec2/tokenization_wav2vec2.py:421: FutureWarning: The class `Wav2Vec2Tokenizer` is deprecated and will be removed in version 5 of Transformers. Please use `Wav2Vec2Processor` or `Wav2Vec2CTCTokenizer` instead.\n",
      "  warnings.warn(\n"
     ]
    }
   ],
   "source": [
    "# tokenizer = Wav2Vec2CTCTokenizer(\"./vocab.json\", unk_token=\"[UNK]\", pad_token=\"[PAD]\", word_delimiter_token=\"|\")\n",
    "tokenizer = Wav2Vec2Tokenizer.from_pretrained(\"facebook/wav2vec2-base-960h\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "#reading the custom dataset\n",
    "data = pd.read_csv('Dataset_voice_to_text.csv')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "   Number        Filename                                               Text\n",
      "0       1  audiofile1.wav                              good morning everyone\n",
      "1       2  audiofile2.wav      it is always nice to meet you in a fresh mood\n",
      "2       3  audiofile3.wav  this is the custom dataset which is used to tr...\n",
      "3       4  audiofile4.wav  this consist of test train and validation data...\n",
      "4       5  audiofile5.wav  train data is used to train the deep learning ...\n"
     ]
    }
   ],
   "source": [
    "print(data.head())"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>Filename</th>\n",
       "      <th>Text</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>audiofile1.wav</td>\n",
       "      <td>good morning everyone</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>audiofile2.wav</td>\n",
       "      <td>it is always nice to meet you in a fresh mood</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>audiofile3.wav</td>\n",
       "      <td>this is the custom dataset which is used to tr...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>audiofile4.wav</td>\n",
       "      <td>this consist of test train and validation data...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>audiofile5.wav</td>\n",
       "      <td>train data is used to train the deep learning ...</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "         Filename                                               Text\n",
       "0  audiofile1.wav                              good morning everyone\n",
       "1  audiofile2.wav      it is always nice to meet you in a fresh mood\n",
       "2  audiofile3.wav  this is the custom dataset which is used to tr...\n",
       "3  audiofile4.wav  this consist of test train and validation data...\n",
       "4  audiofile5.wav  train data is used to train the deep learning ..."
      ]
     },
     "execution_count": 5,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "data = data.drop('Number',axis=1)\n",
    "data.head()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "'/home/ba-anandhus/Documents/fine tuning/mono/audiofile1.wav'"
      ]
     },
     "execution_count": 6,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "file_path = \"/home/ba-anandhus/Documents/fine tuning/mono/\"\n",
    "filenames = data[\"Filename\"]\n",
    "file_path+filenames[0]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 33,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "tensor([[-0.0003, -0.0003, -0.0003,  ...,  0.0019, -0.0012,  0.0023]])\n",
      "[array([-0.00031036, -0.00031036, -0.00031036, ...,  0.00189681,\n",
      "       -0.00119323,  0.00233824], dtype=float32)]\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "numpy.ndarray"
      ]
     },
     "execution_count": 33,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "#getting the vectorized form of the audio\n",
    "file_path = \"/home/ba-anandhus/Documents/fine tuning/mono/\"\n",
    "filenames = data[\"Filename\"]\n",
    "sample_rate, audio_data = wavfile.read(\"audiofile1.wav\")\n",
    "audio, sampling_rate = librosa.load(\"audiofile1.wav\",sr=sample_rate)\n",
    "input_values = tokenizer(audio, return_tensors = 'pt')\n",
    "print(input_values['input_values'])\n",
    "input_values = input_values['input_values'].numpy()\n",
    "print(str(input_values))\n",
    "type(input_values)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [],
   "source": [
    "tokenizer = Wav2Vec2CTCTokenizer(\"./vocab.json\", unk_token=\"[UNK]\", pad_token=\"[PAD]\", word_delimiter_token=\"|\")\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [],
   "source": [
    "from transformers import Wav2Vec2FeatureExtractor\n",
    "\n",
    "feature_extractor = Wav2Vec2FeatureExtractor(feature_size=1, sampling_rate=16000, padding_value=0.0, do_normalize=True, return_attention_mask=False)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [],
   "source": [
    "from transformers import Wav2Vec2Processor\n",
    "\n",
    "processor = Wav2Vec2Processor(feature_extractor=feature_extractor, tokenizer=tokenizer)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Downloading: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 1.80k/1.80k [00:00<00:00, 646kB/s]\n",
      "/home/ba-anandhus/Documents/fine tuning/fine/lib/python3.8/site-packages/transformers/configuration_utils.py:336: UserWarning: Passing `gradient_checkpointing` to a config initialization is deprecated and will be removed in v5 Transformers. Using `model.gradient_checkpointing_enable()` instead, or if you are using the `Trainer` API, pass `gradient_checkpointing=True` in your `TrainingArguments`.\n",
      "  warnings.warn(\n",
      "Downloading: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 363M/363M [00:33<00:00, 11.3MB/s]  \n",
      "Some weights of the model checkpoint at facebook/wav2vec2-base were not used when initializing Wav2Vec2ForCTC: ['project_hid.weight', 'project_q.weight', 'quantizer.weight_proj.weight', 'project_hid.bias', 'quantizer.weight_proj.bias', 'project_q.bias', 'quantizer.codevectors']\n",
      "- This IS expected if you are initializing Wav2Vec2ForCTC from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
      "- This IS NOT expected if you are initializing Wav2Vec2ForCTC from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
      "Some weights of Wav2Vec2ForCTC were not initialized from the model checkpoint at facebook/wav2vec2-base and are newly initialized: ['lm_head.weight', 'lm_head.bias']\n",
      "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
     ]
    }
   ],
   "source": [
    "#model loading\n",
    "model = Wav2Vec2ForCTC.from_pretrained(\n",
    "    \"facebook/wav2vec2-base\", \n",
    "    ctc_loss_reduction=\"mean\", \n",
    "    pad_token_id=processor.tokenizer.pad_token_id,\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {},
   "outputs": [],
   "source": [
    "model.freeze_feature_extractor()\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {},
   "outputs": [],
   "source": [
    "from transformers import TrainingArguments\n",
    "\n",
    "training_args = TrainingArguments(\n",
    "  output_dir=\".\",\n",
    "  group_by_length=True,\n",
    "  per_device_train_batch_size=32,\n",
    "  evaluation_strategy=\"steps\",\n",
    "  num_train_epochs=30,\n",
    "  fp16=False,\n",
    "  gradient_checkpointing=True, \n",
    "  save_steps=500,\n",
    "  eval_steps=500,\n",
    "  logging_steps=500,\n",
    "  learning_rate=1e-4,\n",
    "  weight_decay=0.005,\n",
    "  warmup_steps=1000,\n",
    "  save_total_limit=2,\n",
    "  push_to_hub=False,\n",
    ")\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "metadata": {},
   "outputs": [],
   "source": [
    "import torch\n",
    "\n",
    "from dataclasses import dataclass, field\n",
    "from typing import Any, Dict, List, Optional, Union\n",
    "\n",
    "@dataclass\n",
    "class DataCollatorCTCWithPadding:\n",
    "    \"\"\"\n",
    "    Data collator that will dynamically pad the inputs received.\n",
    "    Args:\n",
    "        processor (:class:`~transformers.Wav2Vec2Processor`)\n",
    "            The processor used for proccessing the data.\n",
    "        padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):\n",
    "            Select a strategy to pad the returned sequences (according to the model's padding side and padding index)\n",
    "            among:\n",
    "            * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single\n",
    "              sequence if provided).\n",
    "            * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the\n",
    "              maximum acceptable input length for the model if that argument is not provided.\n",
    "            * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of\n",
    "              different lengths).\n",
    "        max_length (:obj:`int`, `optional`):\n",
    "            Maximum length of the ``input_values`` of the returned list and optionally padding length (see above).\n",
    "        max_length_labels (:obj:`int`, `optional`):\n",
    "            Maximum length of the ``labels`` returned list and optionally padding length (see above).\n",
    "        pad_to_multiple_of (:obj:`int`, `optional`):\n",
    "            If set will pad the sequence to a multiple of the provided value.\n",
    "            This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=\n",
    "            7.5 (Volta).\n",
    "    \"\"\"\n",
    "\n",
    "    processor: Wav2Vec2Processor\n",
    "    padding: Union[bool, str] = True\n",
    "    max_length: Optional[int] = None\n",
    "    max_length_labels: Optional[int] = None\n",
    "    pad_to_multiple_of: Optional[int] = None\n",
    "    pad_to_multiple_of_labels: Optional[int] = None\n",
    "\n",
    "    def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:\n",
    "        # split inputs and labels since they have to be of different lengths and need\n",
    "        # different padding methods\n",
    "        input_features = [{\"input_values\": feature[\"input_values\"]} for feature in features]\n",
    "        label_features = [{\"input_ids\": feature[\"labels\"]} for feature in features]\n",
    "\n",
    "        batch = self.processor.pad(\n",
    "            input_features,\n",
    "            padding=self.padding,\n",
    "            max_length=self.max_length,\n",
    "            pad_to_multiple_of=self.pad_to_multiple_of,\n",
    "            return_tensors=\"pt\",\n",
    "        )\n",
    "        with self.processor.as_target_processor():\n",
    "            labels_batch = self.processor.pad(\n",
    "                label_features,\n",
    "                padding=self.padding,\n",
    "                max_length=self.max_length_labels,\n",
    "                pad_to_multiple_of=self.pad_to_multiple_of_labels,\n",
    "                return_tensors=\"pt\",\n",
    "            )\n",
    "\n",
    "        # replace padding with -100 to ignore loss correctly\n",
    "        labels = labels_batch[\"input_ids\"].masked_fill(labels_batch.attention_mask.ne(1), -100)\n",
    "\n",
    "        batch[\"labels\"] = labels\n",
    "\n",
    "        return batch\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 24,
   "metadata": {},
   "outputs": [],
   "source": [
    "data_collator = DataCollatorCTCWithPadding(processor=processor, padding=True)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 26,
   "metadata": {},
   "outputs": [],
   "source": [
    "def compute_metrics(pred):\n",
    "    pred_logits = pred.predictions\n",
    "    pred_ids = np.argmax(pred_logits, axis=-1)\n",
    "\n",
    "    pred.label_ids[pred.label_ids == -100] = processor.tokenizer.pad_token_id\n",
    "\n",
    "    pred_str = processor.batch_decode(pred_ids)\n",
    "    # we do not want to group tokens when computing the metrics\n",
    "    label_str = processor.batch_decode(pred.label_ids, group_tokens=False)\n",
    "\n",
    "    wer = wer_metric.compute(predictions=pred_str, references=label_str)\n",
    "\n",
    "    return {\"wer\": wer}\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 27,
   "metadata": {},
   "outputs": [
    {
     "ename": "NameError",
     "evalue": "name 'timit_prepared' is not defined",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mNameError\u001b[0m                                 Traceback (most recent call last)",
      "Cell \u001b[0;32mIn[27], line 8\u001b[0m\n\u001b[1;32m      1\u001b[0m \u001b[39mfrom\u001b[39;00m \u001b[39mtransformers\u001b[39;00m \u001b[39mimport\u001b[39;00m Trainer\n\u001b[1;32m      3\u001b[0m trainer \u001b[39m=\u001b[39m Trainer(\n\u001b[1;32m      4\u001b[0m     model\u001b[39m=\u001b[39mmodel,\n\u001b[1;32m      5\u001b[0m     data_collator\u001b[39m=\u001b[39mdata_collator,\n\u001b[1;32m      6\u001b[0m     args\u001b[39m=\u001b[39mtraining_args,\n\u001b[1;32m      7\u001b[0m     compute_metrics\u001b[39m=\u001b[39mcompute_metrics,\n\u001b[0;32m----> 8\u001b[0m     train_dataset\u001b[39m=\u001b[39mtimit_prepared[\u001b[39m\"\u001b[39m\u001b[39mtrain\u001b[39m\u001b[39m\"\u001b[39m],\n\u001b[1;32m      9\u001b[0m     eval_dataset\u001b[39m=\u001b[39mtimit_prepared[\u001b[39m\"\u001b[39m\u001b[39mtest\u001b[39m\u001b[39m\"\u001b[39m],\n\u001b[1;32m     10\u001b[0m     tokenizer\u001b[39m=\u001b[39mprocessor\u001b[39m.\u001b[39mfeature_extractor,\n\u001b[1;32m     11\u001b[0m )\n",
      "\u001b[0;31mNameError\u001b[0m: name 'timit_prepared' is not defined"
     ]
    }
   ],
   "source": [
    "from transformers import Trainer\n",
    "\n",
    "trainer = Trainer(\n",
    "    model=model,\n",
    "    data_collator=data_collator,\n",
    "    args=training_args,\n",
    "    compute_metrics=compute_metrics,\n",
    "    train_dataset=timit_prepared[\"train\"],\n",
    "    eval_dataset=timit_prepared[\"test\"],\n",
    "    tokenizer=processor.feature_extractor,\n",
    ")\n"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "fine",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.10"
  },
  "orig_nbformat": 4
 },
 "nbformat": 4,
 "nbformat_minor": 2
}