Upload lora-scripts/sd-scripts/library/device_utils.py with huggingface_hub
Browse files
lora-scripts/sd-scripts/library/device_utils.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import functools
|
2 |
+
import gc
|
3 |
+
|
4 |
+
import torch
|
5 |
+
|
6 |
+
try:
|
7 |
+
HAS_CUDA = torch.cuda.is_available()
|
8 |
+
except Exception:
|
9 |
+
HAS_CUDA = False
|
10 |
+
|
11 |
+
try:
|
12 |
+
HAS_MPS = torch.backends.mps.is_available()
|
13 |
+
except Exception:
|
14 |
+
HAS_MPS = False
|
15 |
+
|
16 |
+
try:
|
17 |
+
import intel_extension_for_pytorch as ipex # noqa
|
18 |
+
|
19 |
+
HAS_XPU = torch.xpu.is_available()
|
20 |
+
except Exception:
|
21 |
+
HAS_XPU = False
|
22 |
+
|
23 |
+
|
24 |
+
def clean_memory():
|
25 |
+
gc.collect()
|
26 |
+
if HAS_CUDA:
|
27 |
+
torch.cuda.empty_cache()
|
28 |
+
if HAS_XPU:
|
29 |
+
torch.xpu.empty_cache()
|
30 |
+
if HAS_MPS:
|
31 |
+
torch.mps.empty_cache()
|
32 |
+
|
33 |
+
|
34 |
+
def clean_memory_on_device(device: torch.device):
|
35 |
+
r"""
|
36 |
+
Clean memory on the specified device, will be called from training scripts.
|
37 |
+
"""
|
38 |
+
gc.collect()
|
39 |
+
|
40 |
+
# device may "cuda" or "cuda:0", so we need to check the type of device
|
41 |
+
if device.type == "cuda":
|
42 |
+
torch.cuda.empty_cache()
|
43 |
+
if device.type == "xpu":
|
44 |
+
torch.xpu.empty_cache()
|
45 |
+
if device.type == "mps":
|
46 |
+
torch.mps.empty_cache()
|
47 |
+
|
48 |
+
|
49 |
+
@functools.lru_cache(maxsize=None)
|
50 |
+
def get_preferred_device() -> torch.device:
|
51 |
+
r"""
|
52 |
+
Do not call this function from training scripts. Use accelerator.device instead.
|
53 |
+
"""
|
54 |
+
if HAS_CUDA:
|
55 |
+
device = torch.device("cuda")
|
56 |
+
elif HAS_XPU:
|
57 |
+
device = torch.device("xpu")
|
58 |
+
elif HAS_MPS:
|
59 |
+
device = torch.device("mps")
|
60 |
+
else:
|
61 |
+
device = torch.device("cpu")
|
62 |
+
print(f"get_preferred_device() -> {device}")
|
63 |
+
return device
|
64 |
+
|
65 |
+
|
66 |
+
def init_ipex():
|
67 |
+
"""
|
68 |
+
Apply IPEX to CUDA hijacks using `library.ipex.ipex_init`.
|
69 |
+
|
70 |
+
This function should run right after importing torch and before doing anything else.
|
71 |
+
|
72 |
+
If IPEX is not available, this function does nothing.
|
73 |
+
"""
|
74 |
+
try:
|
75 |
+
if HAS_XPU:
|
76 |
+
from library.ipex import ipex_init
|
77 |
+
|
78 |
+
is_initialized, error_message = ipex_init()
|
79 |
+
if not is_initialized:
|
80 |
+
print("failed to initialize ipex:", error_message)
|
81 |
+
else:
|
82 |
+
return
|
83 |
+
except Exception as e:
|
84 |
+
print("failed to initialize ipex:", e)
|