Upload lora-scripts/sd-scripts/library/ipex/attention.py with huggingface_hub
Browse files
lora-scripts/sd-scripts/library/ipex/attention.py
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import intel_extension_for_pytorch as ipex # pylint: disable=import-error, unused-import
|
4 |
+
from functools import cache
|
5 |
+
|
6 |
+
# pylint: disable=protected-access, missing-function-docstring, line-too-long
|
7 |
+
|
8 |
+
# ARC GPUs can't allocate more than 4GB to a single block so we slice the attetion layers
|
9 |
+
|
10 |
+
sdpa_slice_trigger_rate = float(os.environ.get('IPEX_SDPA_SLICE_TRIGGER_RATE', 4))
|
11 |
+
attention_slice_rate = float(os.environ.get('IPEX_ATTENTION_SLICE_RATE', 4))
|
12 |
+
|
13 |
+
# Find something divisible with the input_tokens
|
14 |
+
@cache
|
15 |
+
def find_slice_size(slice_size, slice_block_size):
|
16 |
+
while (slice_size * slice_block_size) > attention_slice_rate:
|
17 |
+
slice_size = slice_size // 2
|
18 |
+
if slice_size <= 1:
|
19 |
+
slice_size = 1
|
20 |
+
break
|
21 |
+
return slice_size
|
22 |
+
|
23 |
+
# Find slice sizes for SDPA
|
24 |
+
@cache
|
25 |
+
def find_sdpa_slice_sizes(query_shape, query_element_size):
|
26 |
+
if len(query_shape) == 3:
|
27 |
+
batch_size_attention, query_tokens, shape_three = query_shape
|
28 |
+
shape_four = 1
|
29 |
+
else:
|
30 |
+
batch_size_attention, query_tokens, shape_three, shape_four = query_shape
|
31 |
+
|
32 |
+
slice_block_size = query_tokens * shape_three * shape_four / 1024 / 1024 * query_element_size
|
33 |
+
block_size = batch_size_attention * slice_block_size
|
34 |
+
|
35 |
+
split_slice_size = batch_size_attention
|
36 |
+
split_2_slice_size = query_tokens
|
37 |
+
split_3_slice_size = shape_three
|
38 |
+
|
39 |
+
do_split = False
|
40 |
+
do_split_2 = False
|
41 |
+
do_split_3 = False
|
42 |
+
|
43 |
+
if block_size > sdpa_slice_trigger_rate:
|
44 |
+
do_split = True
|
45 |
+
split_slice_size = find_slice_size(split_slice_size, slice_block_size)
|
46 |
+
if split_slice_size * slice_block_size > attention_slice_rate:
|
47 |
+
slice_2_block_size = split_slice_size * shape_three * shape_four / 1024 / 1024 * query_element_size
|
48 |
+
do_split_2 = True
|
49 |
+
split_2_slice_size = find_slice_size(split_2_slice_size, slice_2_block_size)
|
50 |
+
if split_2_slice_size * slice_2_block_size > attention_slice_rate:
|
51 |
+
slice_3_block_size = split_slice_size * split_2_slice_size * shape_four / 1024 / 1024 * query_element_size
|
52 |
+
do_split_3 = True
|
53 |
+
split_3_slice_size = find_slice_size(split_3_slice_size, slice_3_block_size)
|
54 |
+
|
55 |
+
return do_split, do_split_2, do_split_3, split_slice_size, split_2_slice_size, split_3_slice_size
|
56 |
+
|
57 |
+
# Find slice sizes for BMM
|
58 |
+
@cache
|
59 |
+
def find_bmm_slice_sizes(input_shape, input_element_size, mat2_shape):
|
60 |
+
batch_size_attention, input_tokens, mat2_atten_shape = input_shape[0], input_shape[1], mat2_shape[2]
|
61 |
+
slice_block_size = input_tokens * mat2_atten_shape / 1024 / 1024 * input_element_size
|
62 |
+
block_size = batch_size_attention * slice_block_size
|
63 |
+
|
64 |
+
split_slice_size = batch_size_attention
|
65 |
+
split_2_slice_size = input_tokens
|
66 |
+
split_3_slice_size = mat2_atten_shape
|
67 |
+
|
68 |
+
do_split = False
|
69 |
+
do_split_2 = False
|
70 |
+
do_split_3 = False
|
71 |
+
|
72 |
+
if block_size > attention_slice_rate:
|
73 |
+
do_split = True
|
74 |
+
split_slice_size = find_slice_size(split_slice_size, slice_block_size)
|
75 |
+
if split_slice_size * slice_block_size > attention_slice_rate:
|
76 |
+
slice_2_block_size = split_slice_size * mat2_atten_shape / 1024 / 1024 * input_element_size
|
77 |
+
do_split_2 = True
|
78 |
+
split_2_slice_size = find_slice_size(split_2_slice_size, slice_2_block_size)
|
79 |
+
if split_2_slice_size * slice_2_block_size > attention_slice_rate:
|
80 |
+
slice_3_block_size = split_slice_size * split_2_slice_size / 1024 / 1024 * input_element_size
|
81 |
+
do_split_3 = True
|
82 |
+
split_3_slice_size = find_slice_size(split_3_slice_size, slice_3_block_size)
|
83 |
+
|
84 |
+
return do_split, do_split_2, do_split_3, split_slice_size, split_2_slice_size, split_3_slice_size
|
85 |
+
|
86 |
+
|
87 |
+
original_torch_bmm = torch.bmm
|
88 |
+
def torch_bmm_32_bit(input, mat2, *, out=None):
|
89 |
+
if input.device.type != "xpu":
|
90 |
+
return original_torch_bmm(input, mat2, out=out)
|
91 |
+
do_split, do_split_2, do_split_3, split_slice_size, split_2_slice_size, split_3_slice_size = find_bmm_slice_sizes(input.shape, input.element_size(), mat2.shape)
|
92 |
+
|
93 |
+
# Slice BMM
|
94 |
+
if do_split:
|
95 |
+
batch_size_attention, input_tokens, mat2_atten_shape = input.shape[0], input.shape[1], mat2.shape[2]
|
96 |
+
hidden_states = torch.zeros(input.shape[0], input.shape[1], mat2.shape[2], device=input.device, dtype=input.dtype)
|
97 |
+
for i in range(batch_size_attention // split_slice_size):
|
98 |
+
start_idx = i * split_slice_size
|
99 |
+
end_idx = (i + 1) * split_slice_size
|
100 |
+
if do_split_2:
|
101 |
+
for i2 in range(input_tokens // split_2_slice_size): # pylint: disable=invalid-name
|
102 |
+
start_idx_2 = i2 * split_2_slice_size
|
103 |
+
end_idx_2 = (i2 + 1) * split_2_slice_size
|
104 |
+
if do_split_3:
|
105 |
+
for i3 in range(mat2_atten_shape // split_3_slice_size): # pylint: disable=invalid-name
|
106 |
+
start_idx_3 = i3 * split_3_slice_size
|
107 |
+
end_idx_3 = (i3 + 1) * split_3_slice_size
|
108 |
+
hidden_states[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3] = original_torch_bmm(
|
109 |
+
input[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3],
|
110 |
+
mat2[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3],
|
111 |
+
out=out
|
112 |
+
)
|
113 |
+
else:
|
114 |
+
hidden_states[start_idx:end_idx, start_idx_2:end_idx_2] = original_torch_bmm(
|
115 |
+
input[start_idx:end_idx, start_idx_2:end_idx_2],
|
116 |
+
mat2[start_idx:end_idx, start_idx_2:end_idx_2],
|
117 |
+
out=out
|
118 |
+
)
|
119 |
+
else:
|
120 |
+
hidden_states[start_idx:end_idx] = original_torch_bmm(
|
121 |
+
input[start_idx:end_idx],
|
122 |
+
mat2[start_idx:end_idx],
|
123 |
+
out=out
|
124 |
+
)
|
125 |
+
torch.xpu.synchronize(input.device)
|
126 |
+
else:
|
127 |
+
return original_torch_bmm(input, mat2, out=out)
|
128 |
+
return hidden_states
|
129 |
+
|
130 |
+
original_scaled_dot_product_attention = torch.nn.functional.scaled_dot_product_attention
|
131 |
+
def scaled_dot_product_attention_32_bit(query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False, **kwargs):
|
132 |
+
if query.device.type != "xpu":
|
133 |
+
return original_scaled_dot_product_attention(query, key, value, attn_mask=attn_mask, dropout_p=dropout_p, is_causal=is_causal, **kwargs)
|
134 |
+
do_split, do_split_2, do_split_3, split_slice_size, split_2_slice_size, split_3_slice_size = find_sdpa_slice_sizes(query.shape, query.element_size())
|
135 |
+
|
136 |
+
# Slice SDPA
|
137 |
+
if do_split:
|
138 |
+
batch_size_attention, query_tokens, shape_three = query.shape[0], query.shape[1], query.shape[2]
|
139 |
+
hidden_states = torch.zeros(query.shape, device=query.device, dtype=query.dtype)
|
140 |
+
for i in range(batch_size_attention // split_slice_size):
|
141 |
+
start_idx = i * split_slice_size
|
142 |
+
end_idx = (i + 1) * split_slice_size
|
143 |
+
if do_split_2:
|
144 |
+
for i2 in range(query_tokens // split_2_slice_size): # pylint: disable=invalid-name
|
145 |
+
start_idx_2 = i2 * split_2_slice_size
|
146 |
+
end_idx_2 = (i2 + 1) * split_2_slice_size
|
147 |
+
if do_split_3:
|
148 |
+
for i3 in range(shape_three // split_3_slice_size): # pylint: disable=invalid-name
|
149 |
+
start_idx_3 = i3 * split_3_slice_size
|
150 |
+
end_idx_3 = (i3 + 1) * split_3_slice_size
|
151 |
+
hidden_states[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3] = original_scaled_dot_product_attention(
|
152 |
+
query[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3],
|
153 |
+
key[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3],
|
154 |
+
value[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3],
|
155 |
+
attn_mask=attn_mask[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3] if attn_mask is not None else attn_mask,
|
156 |
+
dropout_p=dropout_p, is_causal=is_causal, **kwargs
|
157 |
+
)
|
158 |
+
else:
|
159 |
+
hidden_states[start_idx:end_idx, start_idx_2:end_idx_2] = original_scaled_dot_product_attention(
|
160 |
+
query[start_idx:end_idx, start_idx_2:end_idx_2],
|
161 |
+
key[start_idx:end_idx, start_idx_2:end_idx_2],
|
162 |
+
value[start_idx:end_idx, start_idx_2:end_idx_2],
|
163 |
+
attn_mask=attn_mask[start_idx:end_idx, start_idx_2:end_idx_2] if attn_mask is not None else attn_mask,
|
164 |
+
dropout_p=dropout_p, is_causal=is_causal, **kwargs
|
165 |
+
)
|
166 |
+
else:
|
167 |
+
hidden_states[start_idx:end_idx] = original_scaled_dot_product_attention(
|
168 |
+
query[start_idx:end_idx],
|
169 |
+
key[start_idx:end_idx],
|
170 |
+
value[start_idx:end_idx],
|
171 |
+
attn_mask=attn_mask[start_idx:end_idx] if attn_mask is not None else attn_mask,
|
172 |
+
dropout_p=dropout_p, is_causal=is_causal, **kwargs
|
173 |
+
)
|
174 |
+
torch.xpu.synchronize(query.device)
|
175 |
+
else:
|
176 |
+
return original_scaled_dot_product_attention(query, key, value, attn_mask=attn_mask, dropout_p=dropout_p, is_causal=is_causal, **kwargs)
|
177 |
+
return hidden_states
|