ACCC1380 commited on
Commit
51def76
·
verified ·
1 Parent(s): 344b0bb

Upload lora-scripts/sd-scripts/library/ipex/gradscaler.py with huggingface_hub

Browse files
lora-scripts/sd-scripts/library/ipex/gradscaler.py ADDED
@@ -0,0 +1,183 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from collections import defaultdict
2
+ import torch
3
+ import intel_extension_for_pytorch as ipex # pylint: disable=import-error, unused-import
4
+ import intel_extension_for_pytorch._C as core # pylint: disable=import-error, unused-import
5
+
6
+ # pylint: disable=protected-access, missing-function-docstring, line-too-long
7
+
8
+ device_supports_fp64 = torch.xpu.has_fp64_dtype()
9
+ OptState = ipex.cpu.autocast._grad_scaler.OptState
10
+ _MultiDeviceReplicator = ipex.cpu.autocast._grad_scaler._MultiDeviceReplicator
11
+ _refresh_per_optimizer_state = ipex.cpu.autocast._grad_scaler._refresh_per_optimizer_state
12
+
13
+ def _unscale_grads_(self, optimizer, inv_scale, found_inf, allow_fp16): # pylint: disable=unused-argument
14
+ per_device_inv_scale = _MultiDeviceReplicator(inv_scale)
15
+ per_device_found_inf = _MultiDeviceReplicator(found_inf)
16
+
17
+ # To set up _amp_foreach_non_finite_check_and_unscale_, split grads by device and dtype.
18
+ # There could be hundreds of grads, so we'd like to iterate through them just once.
19
+ # However, we don't know their devices or dtypes in advance.
20
+
21
+ # https://stackoverflow.com/questions/5029934/defaultdict-of-defaultdict
22
+ # Google says mypy struggles with defaultdicts type annotations.
23
+ per_device_and_dtype_grads = defaultdict(lambda: defaultdict(list)) # type: ignore[var-annotated]
24
+ # sync grad to master weight
25
+ if hasattr(optimizer, "sync_grad"):
26
+ optimizer.sync_grad()
27
+ with torch.no_grad():
28
+ for group in optimizer.param_groups:
29
+ for param in group["params"]:
30
+ if param.grad is None:
31
+ continue
32
+ if (not allow_fp16) and param.grad.dtype == torch.float16:
33
+ raise ValueError("Attempting to unscale FP16 gradients.")
34
+ if param.grad.is_sparse:
35
+ # is_coalesced() == False means the sparse grad has values with duplicate indices.
36
+ # coalesce() deduplicates indices and adds all values that have the same index.
37
+ # For scaled fp16 values, there's a good chance coalescing will cause overflow,
38
+ # so we should check the coalesced _values().
39
+ if param.grad.dtype is torch.float16:
40
+ param.grad = param.grad.coalesce()
41
+ to_unscale = param.grad._values()
42
+ else:
43
+ to_unscale = param.grad
44
+
45
+ # -: is there a way to split by device and dtype without appending in the inner loop?
46
+ to_unscale = to_unscale.to("cpu")
47
+ per_device_and_dtype_grads[to_unscale.device][
48
+ to_unscale.dtype
49
+ ].append(to_unscale)
50
+
51
+ for _, per_dtype_grads in per_device_and_dtype_grads.items():
52
+ for grads in per_dtype_grads.values():
53
+ core._amp_foreach_non_finite_check_and_unscale_(
54
+ grads,
55
+ per_device_found_inf.get("cpu"),
56
+ per_device_inv_scale.get("cpu"),
57
+ )
58
+
59
+ return per_device_found_inf._per_device_tensors
60
+
61
+ def unscale_(self, optimizer):
62
+ """
63
+ Divides ("unscales") the optimizer's gradient tensors by the scale factor.
64
+ :meth:`unscale_` is optional, serving cases where you need to
65
+ :ref:`modify or inspect gradients<working-with-unscaled-gradients>`
66
+ between the backward pass(es) and :meth:`step`.
67
+ If :meth:`unscale_` is not called explicitly, gradients will be unscaled automatically during :meth:`step`.
68
+ Simple example, using :meth:`unscale_` to enable clipping of unscaled gradients::
69
+ ...
70
+ scaler.scale(loss).backward()
71
+ scaler.unscale_(optimizer)
72
+ torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm)
73
+ scaler.step(optimizer)
74
+ scaler.update()
75
+ Args:
76
+ optimizer (torch.optim.Optimizer): Optimizer that owns the gradients to be unscaled.
77
+ .. warning::
78
+ :meth:`unscale_` should only be called once per optimizer per :meth:`step` call,
79
+ and only after all gradients for that optimizer's assigned parameters have been accumulated.
80
+ Calling :meth:`unscale_` twice for a given optimizer between each :meth:`step` triggers a RuntimeError.
81
+ .. warning::
82
+ :meth:`unscale_` may unscale sparse gradients out of place, replacing the ``.grad`` attribute.
83
+ """
84
+ if not self._enabled:
85
+ return
86
+
87
+ self._check_scale_growth_tracker("unscale_")
88
+
89
+ optimizer_state = self._per_optimizer_states[id(optimizer)]
90
+
91
+ if optimizer_state["stage"] is OptState.UNSCALED: # pylint: disable=no-else-raise
92
+ raise RuntimeError(
93
+ "unscale_() has already been called on this optimizer since the last update()."
94
+ )
95
+ elif optimizer_state["stage"] is OptState.STEPPED:
96
+ raise RuntimeError("unscale_() is being called after step().")
97
+
98
+ # FP32 division can be imprecise for certain compile options, so we carry out the reciprocal in FP64.
99
+ assert self._scale is not None
100
+ if device_supports_fp64:
101
+ inv_scale = self._scale.double().reciprocal().float()
102
+ else:
103
+ inv_scale = self._scale.to("cpu").double().reciprocal().float().to(self._scale.device)
104
+ found_inf = torch.full(
105
+ (1,), 0.0, dtype=torch.float32, device=self._scale.device
106
+ )
107
+
108
+ optimizer_state["found_inf_per_device"] = self._unscale_grads_(
109
+ optimizer, inv_scale, found_inf, False
110
+ )
111
+ optimizer_state["stage"] = OptState.UNSCALED
112
+
113
+ def update(self, new_scale=None):
114
+ """
115
+ Updates the scale factor.
116
+ If any optimizer steps were skipped the scale is multiplied by ``backoff_factor``
117
+ to reduce it. If ``growth_interval`` unskipped iterations occurred consecutively,
118
+ the scale is multiplied by ``growth_factor`` to increase it.
119
+ Passing ``new_scale`` sets the new scale value manually. (``new_scale`` is not
120
+ used directly, it's used to fill GradScaler's internal scale tensor. So if
121
+ ``new_scale`` was a tensor, later in-place changes to that tensor will not further
122
+ affect the scale GradScaler uses internally.)
123
+ Args:
124
+ new_scale (float or :class:`torch.FloatTensor`, optional, default=None): New scale factor.
125
+ .. warning::
126
+ :meth:`update` should only be called at the end of the iteration, after ``scaler.step(optimizer)`` has
127
+ been invoked for all optimizers used this iteration.
128
+ """
129
+ if not self._enabled:
130
+ return
131
+
132
+ _scale, _growth_tracker = self._check_scale_growth_tracker("update")
133
+
134
+ if new_scale is not None:
135
+ # Accept a new user-defined scale.
136
+ if isinstance(new_scale, float):
137
+ self._scale.fill_(new_scale) # type: ignore[union-attr]
138
+ else:
139
+ reason = "new_scale should be a float or a 1-element torch.FloatTensor with requires_grad=False."
140
+ assert isinstance(new_scale, torch.FloatTensor), reason # type: ignore[attr-defined]
141
+ assert new_scale.numel() == 1, reason
142
+ assert new_scale.requires_grad is False, reason
143
+ self._scale.copy_(new_scale) # type: ignore[union-attr]
144
+ else:
145
+ # Consume shared inf/nan data collected from optimizers to update the scale.
146
+ # If all found_inf tensors are on the same device as self._scale, this operation is asynchronous.
147
+ found_infs = [
148
+ found_inf.to(device="cpu", non_blocking=True)
149
+ for state in self._per_optimizer_states.values()
150
+ for found_inf in state["found_inf_per_device"].values()
151
+ ]
152
+
153
+ assert len(found_infs) > 0, "No inf checks were recorded prior to update."
154
+
155
+ found_inf_combined = found_infs[0]
156
+ if len(found_infs) > 1:
157
+ for i in range(1, len(found_infs)):
158
+ found_inf_combined += found_infs[i]
159
+
160
+ to_device = _scale.device
161
+ _scale = _scale.to("cpu")
162
+ _growth_tracker = _growth_tracker.to("cpu")
163
+
164
+ core._amp_update_scale_(
165
+ _scale,
166
+ _growth_tracker,
167
+ found_inf_combined,
168
+ self._growth_factor,
169
+ self._backoff_factor,
170
+ self._growth_interval,
171
+ )
172
+
173
+ _scale = _scale.to(to_device)
174
+ _growth_tracker = _growth_tracker.to(to_device)
175
+ # To prepare for next iteration, clear the data collected from optimizers this iteration.
176
+ self._per_optimizer_states = defaultdict(_refresh_per_optimizer_state)
177
+
178
+ def gradscaler_init():
179
+ torch.xpu.amp.GradScaler = ipex.cpu.autocast._grad_scaler.GradScaler
180
+ torch.xpu.amp.GradScaler._unscale_grads_ = _unscale_grads_
181
+ torch.xpu.amp.GradScaler.unscale_ = unscale_
182
+ torch.xpu.amp.GradScaler.update = update
183
+ return torch.xpu.amp.GradScaler