ACCC1380's picture
Upload lora-scripts/sd-scripts/finetune/make_captions.py with huggingface_hub
9e0276b verified
import argparse
import glob
import os
import json
import random
import sys
from pathlib import Path
from PIL import Image
from tqdm import tqdm
import numpy as np
import torch
from library.device_utils import init_ipex, get_preferred_device
init_ipex()
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode
sys.path.append(os.path.dirname(__file__))
from blip.blip import blip_decoder, is_url
import library.train_util as train_util
from library.utils import setup_logging
setup_logging()
import logging
logger = logging.getLogger(__name__)
DEVICE = get_preferred_device()
IMAGE_SIZE = 384
# 正方形でいいのか? という気がするがソースがそうなので
IMAGE_TRANSFORM = transforms.Compose(
[
transforms.Resize((IMAGE_SIZE, IMAGE_SIZE), interpolation=InterpolationMode.BICUBIC),
transforms.ToTensor(),
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
]
)
# 共通化したいが微妙に処理が異なる……
class ImageLoadingTransformDataset(torch.utils.data.Dataset):
def __init__(self, image_paths):
self.images = image_paths
def __len__(self):
return len(self.images)
def __getitem__(self, idx):
img_path = self.images[idx]
try:
image = Image.open(img_path).convert("RGB")
# convert to tensor temporarily so dataloader will accept it
tensor = IMAGE_TRANSFORM(image)
except Exception as e:
logger.error(f"Could not load image path / 画像を読み込めません: {img_path}, error: {e}")
return None
return (tensor, img_path)
def collate_fn_remove_corrupted(batch):
"""Collate function that allows to remove corrupted examples in the
dataloader. It expects that the dataloader returns 'None' when that occurs.
The 'None's in the batch are removed.
"""
# Filter out all the Nones (corrupted examples)
batch = list(filter(lambda x: x is not None, batch))
return batch
def main(args):
# fix the seed for reproducibility
seed = args.seed # + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
if not os.path.exists("blip"):
args.train_data_dir = os.path.abspath(args.train_data_dir) # convert to absolute path
cwd = os.getcwd()
logger.info(f"Current Working Directory is: {cwd}")
os.chdir("finetune")
if not is_url(args.caption_weights) and not os.path.isfile(args.caption_weights):
args.caption_weights = os.path.join("..", args.caption_weights)
logger.info(f"load images from {args.train_data_dir}")
train_data_dir_path = Path(args.train_data_dir)
image_paths = train_util.glob_images_pathlib(train_data_dir_path, args.recursive)
logger.info(f"found {len(image_paths)} images.")
logger.info(f"loading BLIP caption: {args.caption_weights}")
model = blip_decoder(pretrained=args.caption_weights, image_size=IMAGE_SIZE, vit="large", med_config="./blip/med_config.json")
model.eval()
model = model.to(DEVICE)
logger.info("BLIP loaded")
# captioningする
def run_batch(path_imgs):
imgs = torch.stack([im for _, im in path_imgs]).to(DEVICE)
with torch.no_grad():
if args.beam_search:
captions = model.generate(
imgs, sample=False, num_beams=args.num_beams, max_length=args.max_length, min_length=args.min_length
)
else:
captions = model.generate(
imgs, sample=True, top_p=args.top_p, max_length=args.max_length, min_length=args.min_length
)
for (image_path, _), caption in zip(path_imgs, captions):
with open(os.path.splitext(image_path)[0] + args.caption_extension, "wt", encoding="utf-8") as f:
f.write(caption + "\n")
if args.debug:
logger.info(f'{image_path} {caption}')
# 読み込みの高速化のためにDataLoaderを使うオプション
if args.max_data_loader_n_workers is not None:
dataset = ImageLoadingTransformDataset(image_paths)
data = torch.utils.data.DataLoader(
dataset,
batch_size=args.batch_size,
shuffle=False,
num_workers=args.max_data_loader_n_workers,
collate_fn=collate_fn_remove_corrupted,
drop_last=False,
)
else:
data = [[(None, ip)] for ip in image_paths]
b_imgs = []
for data_entry in tqdm(data, smoothing=0.0):
for data in data_entry:
if data is None:
continue
img_tensor, image_path = data
if img_tensor is None:
try:
raw_image = Image.open(image_path)
if raw_image.mode != "RGB":
raw_image = raw_image.convert("RGB")
img_tensor = IMAGE_TRANSFORM(raw_image)
except Exception as e:
logger.error(f"Could not load image path / 画像を読み込めません: {image_path}, error: {e}")
continue
b_imgs.append((image_path, img_tensor))
if len(b_imgs) >= args.batch_size:
run_batch(b_imgs)
b_imgs.clear()
if len(b_imgs) > 0:
run_batch(b_imgs)
logger.info("done!")
def setup_parser() -> argparse.ArgumentParser:
parser = argparse.ArgumentParser()
parser.add_argument("train_data_dir", type=str, help="directory for train images / 学習画像データのディレクトリ")
parser.add_argument(
"--caption_weights",
type=str,
default="https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_large_caption.pth",
help="BLIP caption weights (model_large_caption.pth) / BLIP captionの重みファイル(model_large_caption.pth)",
)
parser.add_argument(
"--caption_extention",
type=str,
default=None,
help="extension of caption file (for backward compatibility) / 出力されるキャプションファイルの拡張子(スペルミスしていたのを残してあります)",
)
parser.add_argument("--caption_extension", type=str, default=".caption", help="extension of caption file / 出力されるキャプションファイルの拡張子")
parser.add_argument(
"--beam_search",
action="store_true",
help="use beam search (default Nucleus sampling) / beam searchを使う(このオプション未指定時はNucleus sampling)",
)
parser.add_argument("--batch_size", type=int, default=1, help="batch size in inference / 推論時のバッチサイズ")
parser.add_argument(
"--max_data_loader_n_workers",
type=int,
default=None,
help="enable image reading by DataLoader with this number of workers (faster) / DataLoaderによる画像読み込みを有効にしてこのワーカー数を適用する(読み込みを高速化)",
)
parser.add_argument("--num_beams", type=int, default=1, help="num of beams in beam search /beam search時のビーム数(多いと精度が上がるが時間がかかる)")
parser.add_argument("--top_p", type=float, default=0.9, help="top_p in Nucleus sampling / Nucleus sampling時のtop_p")
parser.add_argument("--max_length", type=int, default=75, help="max length of caption / captionの最大長")
parser.add_argument("--min_length", type=int, default=5, help="min length of caption / captionの最小長")
parser.add_argument("--seed", default=42, type=int, help="seed for reproducibility / 再現性を確保するための乱数seed")
parser.add_argument("--debug", action="store_true", help="debug mode")
parser.add_argument("--recursive", action="store_true", help="search for images in subfolders recursively / サブフォルダを再帰的に検索する")
return parser
if __name__ == "__main__":
parser = setup_parser()
args = parser.parse_args()
# スペルミスしていたオプションを復元する
if args.caption_extention is not None:
args.caption_extension = args.caption_extention
main(args)