File size: 18,817 Bytes
8d48da3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 |
import argparse
import shutil
import av
import os
import cv2
import sys
import time
import multiprocessing
import tkinter as tk
from tkinter import filedialog
from concurrent.futures import ThreadPoolExecutor, as_completed
from PIL import Image
import numpy as np
from collections import defaultdict
from waifuc.action import MinSizeFilterAction, PersonSplitAction
from waifuc.export import SaveExporter, TextualInversionExporter
from waifuc.source import LocalSource
from tqdm import tqdm
import logging
import threading
# 配置日志
logging.basicConfig(filename='video_image_processing.log', level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s')
def select_folder():
"""
弹出文件夹选择对话框,返回选择的文件夹路径。
"""
# 如果需要弹出对话框,取消注释以下代码
# root = tk.Tk()
# root.withdraw()
# folder_path = filedialog.askdirectory()
# return folder_path
# 直接返回默认路径
folder_path = './anime'
return folder_path
def create_output_folder(folder_path, extra_name):
"""
创建输出文件夹,文件夹名称为原名称加上额外的后缀。
参数:
folder_path (str): 原文件夹路径。
extra_name (str): 要添加到文件夹名称后的字符串。
返回:
str: 新创建的文件夹路径。
"""
folder_name = os.path.basename(folder_path)
new_folder_name = f"{folder_name}{extra_name}"
new_folder_path = os.path.join(folder_path, new_folder_name)
os.makedirs(new_folder_path, exist_ok=True)
return new_folder_path
def find_video_files(folder_path):
"""
在指定文件夹及其子文件夹中查找所有视频文件。
参数:
folder_path (str): 文件夹路径。
返回:
list: 视频文件的完整路径列表。
"""
video_extensions = ('.mp4', '.avi', '.mov', '.mkv', '.flv', '.wmv')
video_files = []
for root, dirs, files in os.walk(folder_path):
for file in files:
if file.lower().endswith(video_extensions):
video_files.append(os.path.join(root, file))
return video_files
def process_video(video_file, new_folder_path, frame_step=5, position=0):
"""
处理视频文件,提取帧,计算哈希和清晰度,保存符合条件的帧。
参数:
video_file (str): 视频文件路径。
new_folder_path (str): 保存提取帧的文件夹路径。
frame_step (int): 帧步长,每隔多少帧处理一次。
position (int): tqdm进度条的位置,以避免多进度条叠加。
"""
def compute_phash(image):
resized = cv2.resize(image, (32, 32), interpolation=cv2.INTER_AREA)
gray = cv2.cvtColor(resized, cv2.COLOR_BGR2GRAY)
dct = cv2.dct(np.float32(gray))
dct_low = dct[:8, :8]
med = np.median(dct_low)
return (dct_low > med).flatten()
def compute_sharpness(image):
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# 使用 Sobel 算子计算梯度
grad_x = cv2.Sobel(gray, cv2.CV_16S, 1, 0)
grad_y = cv2.Sobel(gray, cv2.CV_16S, 0, 1)
# 计算梯度的绝对值和
sharpness = cv2.mean(np.abs(grad_x) + np.abs(grad_y))[0]
return sharpness
def save_frame(image, frame_count):
image_name = f'{os.path.splitext(os.path.basename(video_file))[0]}-{frame_count:08d}.jpg'
image_path = os.path.join(new_folder_path, image_name)
cv2.imwrite(image_path, image, [cv2.IMWRITE_JPEG_QUALITY, 90])
try:
# 记录开始处理日志
logging.info(f"开始处理视频文件: {video_file}")
print(f"开始处理视频文件: {video_file}")
# 打开视频文件
container = av.open(video_file)
video = container.streams.video[0]
# 尝试启用硬件加速
try:
video.codec_context.options = {'hwaccel': 'auto'}
except Exception as e:
print(f"无法启用硬件加速: {e}")
logging.warning(f"无法启用硬件加速: {e}")
# 获取总帧数
total_frames = video.frames
if total_frames == 0:
# 如果无法获取帧数,估计总帧数
container.seek(0)
total_frames = int(container.duration * video.average_rate)
pbar = tqdm(total=total_frames, desc=os.path.basename(video_file), position=position, leave=True, unit="帧")
start_time = time.time()
frame_count = 0
saved_count = 0
sharpness_threshold = 15 # 清晰度阈值
reference_image = None
reference_phash = None
reference_sharpness = None
reference_count = 0
for frame in container.decode(video=0):
pbar.update(1) # 更新进度条
if frame_step > 0 and frame_count % frame_step != 0:
frame_count += 1
continue # 跳过不需要处理的帧
image = frame.to_ndarray(format='bgr24')
phash = compute_phash(image)
sharpness = compute_sharpness(image)
if sharpness < sharpness_threshold:
frame_count += 1
continue # 跳过模糊帧
if reference_image is None:
# 初始化参考帧
reference_image = image
reference_phash = phash
reference_sharpness = sharpness
reference_count = frame_count
else:
hamming_dist = np.sum(phash != reference_phash)
if hamming_dist > 10:
# 与参考帧差异较大,保存参考帧
save_frame(reference_image, reference_count)
saved_count += 1
# 更新参考帧
reference_image = image
reference_phash = phash
reference_sharpness = sharpness
reference_count = frame_count
else:
# 与参考帧相似,比较清晰度
if sharpness > reference_sharpness:
# 当前帧更清晰,更新参考帧
reference_image = image
reference_phash = phash
reference_sharpness = sharpness
reference_count = frame_count
# 否则,保留原参考帧
frame_count += 1
# 保存最后的参考帧
if reference_image is not None:
save_frame(reference_image, reference_count)
saved_count += 1
total_time = time.time() - start_time
average_fps = frame_count / total_time if total_time > 0 else 0
message = (f'{os.path.basename(video_file)} 处理完成: 总共 {frame_count} 帧, '
f'保存 {saved_count} 帧, 平均 {average_fps:.2f} 帧/秒')
print(message)
logging.info(message)
pbar.close()
except Exception as e:
error_message = f'处理视频文件 {video_file} 时出错: {e}'
print(error_message)
logging.error(error_message)
def process_images_folder(new_folder_path):
"""
处理保存的图像文件,去除相似的重复图片,仅保留最清晰的。
参数:
new_folder_path (str): 图像文件夹路径。
返回:
set: 保留的图像文件路径集合。
"""
def get_image_files(folder_path):
image_files = [os.path.join(folder_path, f) for f in os.listdir(folder_path)
if f.lower().endswith(('.jpg', '.jpeg', '.png'))]
print(f'总共找到 {len(image_files)} 张图片')
logging.info(f'总共找到 {len(image_files)} 张图片')
return image_files
def process_images(image_files):
def compute_phash(image):
resized = cv2.resize(image, (32, 32), interpolation=cv2.INTER_AREA)
gray = cv2.cvtColor(resized, cv2.COLOR_BGR2GRAY)
dct = cv2.dct(np.float32(gray))
dct_low = dct[:8, :8]
med = np.median(dct_low)
return (dct_low > med).flatten()
def compute_sharpness(image):
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
return cv2.Laplacian(gray, cv2.CV_64F).var()
def process_single_image(image_path):
image = cv2.imread(image_path)
if image is None:
error_message = f"无法读取图像文件 {image_path}"
print(f"警告:{error_message}")
logging.warning(error_message)
return None
try:
phash = compute_phash(image)
sharpness = compute_sharpness(image)
return image_path, phash, sharpness
except Exception as e:
error_message = f"处理图像时出错 {image_path}: {e}"
print(f"警告:{error_message}")
logging.warning(error_message)
return None
image_data = {}
start_time = time.time()
with ThreadPoolExecutor() as executor:
futures = {executor.submit(process_single_image, img): img for img in image_files}
for future in tqdm(as_completed(futures), total=len(futures), desc="计算哈希和清晰度", unit="张"):
result = future.result()
if result is not None:
image_path, phash, sharpness = result
image_data[image_path] = {'phash': phash, 'sharpness': sharpness}
elapsed_time = time.time() - start_time
print(f'\n图片处理完成,耗时 {elapsed_time:.2f} 秒')
logging.info(f'图片处理完成,耗时 {elapsed_time:.2f} 秒')
return image_data
def compare_images(image_data):
similar_groups = {}
hash_buckets = defaultdict(list)
# 将哈希值转换为字符串,并取前几位作为桶的键
for image_path, data in image_data.items():
hash_str = ''.join(data['phash'].astype(int).astype(str))
bucket_key = hash_str[:16] # 取前16位作为桶的键,可根据需要调整
hash_buckets[bucket_key].append((image_path, data))
total_buckets = len(hash_buckets)
print(f"总共划分为 {total_buckets} 个哈希桶")
logging.info(f"总共划分为 {total_buckets} 个哈希桶")
# 遍历每个桶,比较桶内的图片
for bucket_key, bucket in tqdm(hash_buckets.items(), desc="比较哈希桶", unit="桶"):
paths = [item[0] for item in bucket]
hashes = np.array([item[1]['phash'] for item in bucket])
for i in range(len(paths)):
for j in range(i + 1, len(paths)):
dist = np.sum(hashes[i] != hashes[j])
if dist <= 10: # 阈值,可根据需要调整
similar_groups.setdefault(paths[i], []).append(paths[j])
return similar_groups
def select_images_to_keep(similar_groups, image_data):
to_keep = set()
processed_groups = set()
for group_key, group in similar_groups.items():
if group_key in processed_groups:
continue
group_with_key = [group_key] + group
sharpest = max(group_with_key, key=lambda x: image_data[x]['sharpness'])
to_keep.add(sharpest)
processed_groups.update(group_with_key)
# 将不在任何相似组中的图片也加入保留列表
all_images = set(image_data.keys())
images_in_groups = set().union(*[set([k] + v) for k, v in similar_groups.items()])
images_not_in_groups = all_images - images_in_groups
to_keep.update(images_not_in_groups)
return to_keep
def delete_duplicate_images(similar_groups, to_keep):
deleted_count = 0
to_delete = set()
# 收集所有需要删除的图片
for group_key, similar_images in similar_groups.items():
group_with_key = [group_key] + similar_images
for image_path in group_with_key:
if image_path not in to_keep:
to_delete.add(image_path)
total_to_delete = len(to_delete)
# 删除图片
for image_path in tqdm(to_delete, desc="删除重复图片", unit="张"):
try:
os.remove(image_path)
deleted_count += 1
except Exception as e:
print(f"\n无法删除 {image_path}: {e}")
logging.error(f"无法删除 {image_path}: {e}")
print(f'\n去重完成,保留 {len(to_keep)} 张图片,成功删除 {deleted_count} 张重复图片')
logging.info(f'去重完成,保留 {len(to_keep)} 张图片,成功删除 {deleted_count} 张重复图片')
return deleted_count
# 开始执行去重流程
image_files = get_image_files(new_folder_path)
if not image_files:
print("没有找到图像文件进行处理。")
logging.info("没有找到图像文件进行处理。")
return
image_data = process_images(image_files)
if not image_data:
print("没有有效的图像数据进行处理。")
logging.info("没有有效的图像数据进行处理。")
return
similar_groups = compare_images(image_data)
to_keep = select_images_to_keep(similar_groups, image_data)
deleted_count = delete_duplicate_images(similar_groups, to_keep)
def waifuc_split(new_folder_path, split_path):
"""
使用 waifuc 库对图像进行分割,提取人物部分。
参数:
new_folder_path (str): 原始图像文件夹路径。
split_path (str): 分割后图像的保存路径。
"""
# 直接使用目录路径初始化 LocalSource
s = LocalSource(new_folder_path)
s = s.attach(
PersonSplitAction(), MinSizeFilterAction(300),
)
s.export(SaveExporter(split_path, no_meta=True))
def process_split_images(new_folder_path, split_path):
"""
将没有检测到人物的原始图像移动到指定的无人文件夹。
参数:
new_folder_path (str): 原始图像文件夹路径。
split_path (str): 分割后图像的保存路径。
"""
nohuman_path = create_output_folder(new_folder_path, "-nohuman")
# 获取去重后的原始图片列表
original_images = [f for f in os.listdir(new_folder_path)
if os.path.isfile(os.path.join(new_folder_path, f)) and
f.lower().endswith(('.jpg', '.jpeg', '.png', '.webp'))]
split_images = [f for f in os.listdir(split_path)
if f.lower().endswith(('.jpg', '.jpeg', '.png', '.webp'))]
total_images = len(original_images)
moved_count = 0
for original_image in tqdm(original_images, desc="处理无人图片", unit="张"):
base_name = os.path.splitext(original_image)[0]
has_person = any(split_image.startswith(base_name + '_person') for split_image in split_images)
if not has_person:
source_path = os.path.join(new_folder_path, original_image)
dest_path = os.path.join(nohuman_path, original_image)
try:
shutil.move(source_path, dest_path)
moved_count += 1
except Exception as e:
print(f"\n无法移动 {source_path}: {e}")
logging.error(f"无法移动 {source_path}: {e}")
print(f'\n处理完成。总共处理 {total_images} 张图片, 移动了 {moved_count} 张无人图片到 {nohuman_path}')
logging.info(f'处理完成。总共处理 {total_images} 张图片, 移动了 {moved_count} 张无人图片到 {nohuman_path}')
def main():
"""
主函数,执行整个处理流程。
"""
folder_path = select_folder()
if not folder_path:
print("未选择文件夹,程序退出。")
logging.error("未选择文件夹,程序退出。")
return
video_files = find_video_files(folder_path)
if not video_files:
print("所选文件夹中未找到视频文件,程序退出。")
logging.error("所选文件夹中未找到视频文件,程序退出。")
return
# 创建保存提取帧的文件夹
new_folder_path = create_output_folder(folder_path, "-Eng_SS")
# 设定线程数,根据系统的CPU核数进行合理配置
max_workers = min(32, len(video_files)) # 例如,最多使用4个线程,可以根据需求调整
print(f"开始使用 {max_workers} 个线程处理 {len(video_files)} 个视频文件...")
logging.info(f"开始使用 {max_workers} 个线程处理 {len(video_files)} 个视频文件...")
# 使用 position 变量为每个视频的进度条分配唯一的位置
with ThreadPoolExecutor(max_workers=max_workers) as executor:
# 提交所有视频处理任务,并分配位置
futures = {
executor.submit(process_video, vf, new_folder_path, 5, pos): vf
for pos, vf in enumerate(video_files)
}
# 使用 tqdm 的动态进度条管理
for future in as_completed(futures):
video_file = futures[future]
try:
future.result() # 获取结果,处理可能的异常
except Exception as e:
error_message = f"处理视频文件 {video_file} 时发生异常: {e}"
print(error_message)
logging.error(error_message)
# 等待所有视频处理完成
print("所有视频文件处理完成。")
logging.info("所有视频文件处理完成。")
# 去除相似的重复图片(第一次)
process_images_folder(new_folder_path)
# 去除相似的重复图片(第二次)
process_images_folder(new_folder_path)
# 创建保存分割后图像的文件夹
split_path = create_output_folder(new_folder_path, "-split")
# 使用 waifuc 库进行人物分割
waifuc_split(new_folder_path, split_path)
# 移动没有检测到人物的图像到无人文件夹
process_split_images(new_folder_path, split_path)
if __name__ == "__main__":
main() |