File size: 16,236 Bytes
0c834e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
import argparse
import shutil
import av
import os
import cv2
import sys
import time
import multiprocessing
import tkinter as tk
from tkinter import filedialog
from concurrent.futures import ThreadPoolExecutor
from PIL import Image
import numpy as np
from collections import defaultdict
from waifuc.action import MinSizeFilterAction, PersonSplitAction
from waifuc.export import SaveExporter, TextualInversionExporter
from waifuc.source import LocalSource
from tqdm import tqdm
import logging

# 配置日志
logging.basicConfig(filename='video_image_processing.log', level=logging.INFO,
                    format='%(asctime)s - %(levelname)s - %(message)s')


def select_folder():
    """

    弹出文件夹选择对话框,返回选择的文件夹路径。

    """
    root = tk.Tk()
    root.withdraw()  # 隐藏主窗口
    folder_path = filedialog.askdirectory(title="选择视频文件夹")
    return folder_path


def create_output_folder(folder_path, extra_name):
    """

    创建输出文件夹,文件夹名称为原名称加上额外的后缀。



    参数:

        folder_path (str): 原文件夹路径。

        extra_name (str): 要添加到文件夹名称后的字符串。



    返回:

        str: 新创建的文件夹路径。

    """
    folder_name = os.path.basename(folder_path)
    new_folder_name = f"{folder_name}{extra_name}"
    new_folder_path = os.path.join(folder_path, new_folder_name)
    os.makedirs(new_folder_path, exist_ok=True)
    return new_folder_path


def find_video_files(folder_path):
    """

    在指定文件夹及其子文件夹中查找所有视频文件。



    参数:

        folder_path (str): 文件夹路径。



    返回:

        list: 视频文件的完整路径列表。

    """
    video_extensions = ('.mp4', '.avi', '.mov', '.mkv', '.flv', '.wmv')
    video_files = []
    for root, dirs, files in os.walk(folder_path):
        for file in files:
            if file.lower().endswith(video_extensions):
                video_files.append(os.path.join(root, file))
    return video_files


def process_video(video_file, new_folder_path, frame_step=5):
    """

    处理视频文件,提取帧,计算哈希和清晰度,保存符合条件的帧。



    参数:

        video_file (str): 视频文件路径。

        new_folder_path (str): 保存提取帧的文件夹路径。

        frame_step (int): 帧步长,每隔多少帧处理一次。

    """
    def compute_phash(image):
        resized = cv2.resize(image, (32, 32), interpolation=cv2.INTER_AREA)
        gray = cv2.cvtColor(resized, cv2.COLOR_BGR2GRAY)
        dct = cv2.dct(np.float32(gray))
        dct_low = dct[:8, :8]
        med = np.median(dct_low)
        return (dct_low > med).flatten()

    def compute_sharpness(image):
        gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
        # 使用 Sobel 算子计算梯度
        grad_x = cv2.Sobel(gray, cv2.CV_16S, 1, 0)
        grad_y = cv2.Sobel(gray, cv2.CV_16S, 0, 1)
        # 计算梯度的绝对值和
        sharpness = cv2.mean(np.abs(grad_x) + np.abs(grad_y))[0]
        return sharpness

    def save_frame(image, frame_count):
        image_name = f'{os.path.splitext(os.path.basename(video_file))[0]}-{frame_count:08d}.jpg'
        image_path = os.path.join(new_folder_path, image_name)
        cv2.imwrite(image_path, image, [cv2.IMWRITE_JPEG_QUALITY, 90])

    # 打开视频文件
    container = av.open(video_file)
    video = container.streams.video[0]

    # 尝试启用硬件加速
    try:
        video.codec_context.options = {'hwaccel': 'auto'}
    except Exception as e:
        print(f"无法启用硬件加速: {e}")
        logging.warning(f"无法启用硬件加速: {e}")

    start_time = time.time()
    frame_count = 0
    saved_count = 0
    sharpness_threshold = 15  # 清晰度阈值

    reference_image = None
    reference_phash = None
    reference_sharpness = None
    reference_count = 0

    for frame in tqdm(container.decode(video=0), desc=f"处理视频 {os.path.basename(video_file)}"):
        if frame_count % frame_step != 0:
            frame_count += 1
            continue  # 跳过不需要处理的帧

        image = frame.to_ndarray(format='bgr24')
        phash = compute_phash(image)
        sharpness = compute_sharpness(image)

        if sharpness < sharpness_threshold:
            frame_count += 1
            continue  # 跳过模糊帧

        if reference_image is None:
            # 初始化参考帧
            reference_image = image
            reference_phash = phash
            reference_sharpness = sharpness
            reference_count = frame_count
        else:
            hamming_dist = np.sum(phash != reference_phash)
            if hamming_dist > 10:
                # 与参考帧差异较大,保存参考帧
                save_frame(reference_image, reference_count)
                saved_count += 1
                # 更新参考帧
                reference_image = image
                reference_phash = phash
                reference_sharpness = sharpness
                reference_count = frame_count
            else:
                # 与参考帧相似,比较清晰度
                if sharpness > reference_sharpness:
                    # 当前帧更清晰,更新参考帧
                    reference_image = image
                    reference_phash = phash
                    reference_sharpness = sharpness
                    reference_count = frame_count
                # 否则,保留原参考帧

        frame_count += 1

    # 保存最后的参考帧
    if reference_image is not None:
        save_frame(reference_image, reference_count)
        saved_count += 1

    total_time = time.time() - start_time
    average_fps = frame_count / total_time if total_time > 0 else 0
    print(f'\n{os.path.basename(video_file)} 处理完成: 总共 {frame_count} 帧, 保存 {saved_count} 帧, 平均 {average_fps:.2f} 帧/秒')
    logging.info(f'{os.path.basename(video_file)} 处理完成: 总共 {frame_count} 帧, 保存 {saved_count} 帧, 平均 {average_fps:.2f} 帧/秒')


def process_images_folder(new_folder_path):
    """

    处理保存的图像文件,去除相似的重复图片,仅保留最清晰的。



    参数:

        new_folder_path (str): 图像文件夹路径。



    返回:

        set: 保留的图像文件路径集合。

    """
    def get_image_files(folder_path):
        image_files = [os.path.join(folder_path, f) for f in os.listdir(folder_path)
                       if f.lower().endswith(('.jpg', '.jpeg', '.png'))]
        print(f'总共找到 {len(image_files)} 张图片')
        logging.info(f'总共找到 {len(image_files)} 张图片')
        return image_files

    def process_images(image_files):
        def compute_phash(image):
            resized = cv2.resize(image, (32, 32), interpolation=cv2.INTER_AREA)
            gray = cv2.cvtColor(resized, cv2.COLOR_BGR2GRAY)
            dct = cv2.dct(np.float32(gray))
            dct_low = dct[:8, :8]
            med = np.median(dct_low)
            return (dct_low > med).flatten()

        def compute_sharpness(image):
            gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
            return cv2.Laplacian(gray, cv2.CV_64F).var()

        def process_single_image(image_path):
            image = cv2.imread(image_path)
            if image is None:
                error_message = f"无法读取图像文件 {image_path}"
                print(f"警告:{error_message}")
                logging.warning(error_message)
                return None
            try:
                phash = compute_phash(image)
                sharpness = compute_sharpness(image)
                return image_path, phash, sharpness
            except Exception as e:
                error_message = f"处理图像时出错 {image_path}: {e}"
                print(f"警告:{error_message}")
                logging.warning(error_message)
                return None

        image_data = {}
        start_time = time.time()
        with ThreadPoolExecutor() as executor:
            futures = [executor.submit(process_single_image, img) for img in image_files]
            for future in tqdm(futures, desc="计算哈希和清晰度", unit="张"):
                result = future.result()
                if result is not None:
                    image_path, phash, sharpness = result
                    image_data[image_path] = {'phash': phash, 'sharpness': sharpness}

        elapsed_time = time.time() - start_time
        print(f'\n图片处理完成,耗时 {elapsed_time:.2f} 秒')
        logging.info(f'图片处理完成,耗时 {elapsed_time:.2f} 秒')
        return image_data

    def compare_images(image_data):
        similar_groups = {}
        hash_buckets = defaultdict(list)
        # 将哈希值转换为字符串,并取前几位作为桶的键
        for image_path, data in image_data.items():
            hash_str = ''.join(data['phash'].astype(int).astype(str))
            bucket_key = hash_str[:16]  # 取前16位作为桶的键,可根据需要调整
            hash_buckets[bucket_key].append((image_path, data))

        total_buckets = len(hash_buckets)
        print(f"总共划分为 {total_buckets} 个哈希桶")
        logging.info(f"总共划分为 {total_buckets} 个哈希桶")

        # 遍历每个桶,比较桶内的图片
        for bucket_key, bucket in tqdm(hash_buckets.items(), desc="比较哈希桶", unit="桶"):
            paths = [item[0] for item in bucket]
            hashes = np.array([item[1]['phash'] for item in bucket])
            for i in range(len(paths)):
                for j in range(i + 1, len(paths)):
                    dist = np.sum(hashes[i] != hashes[j])
                    if dist <= 10:  # 阈值,可根据需要调整
                        similar_groups.setdefault(paths[i], []).append(paths[j])

        return similar_groups

    def select_images_to_keep(similar_groups, image_data):
        to_keep = set()
        processed_groups = set()
        for group_key, group in similar_groups.items():
            if group_key in processed_groups:
                continue
            group_with_key = [group_key] + group
            sharpest = max(group_with_key, key=lambda x: image_data[x]['sharpness'])
            to_keep.add(sharpest)
            processed_groups.update(group_with_key)
        # 将不在任何相似组中的图片也加入保留列表
        all_images = set(image_data.keys())
        images_in_groups = set().union(*[set([k] + v) for k, v in similar_groups.items()])
        images_not_in_groups = all_images - images_in_groups
        to_keep.update(images_not_in_groups)
        return to_keep

    def delete_duplicate_images(similar_groups, to_keep):
        deleted_count = 0
        to_delete = set()

        # 收集所有需要删除的图片
        for group_key, similar_images in similar_groups.items():
            group_with_key = [group_key] + similar_images
            for image_path in group_with_key:
                if image_path not in to_keep:
                    to_delete.add(image_path)

        total_to_delete = len(to_delete)

        # 删除图片
        for image_path in tqdm(to_delete, desc="删除重复图片", unit="张"):
            try:
                os.remove(image_path)
                deleted_count += 1
            except Exception as e:
                print(f"\n无法删除 {image_path}: {e}")
                logging.error(f"无法删除 {image_path}: {e}")

        print(f'\n去重完成,保留 {len(to_keep)} 张图片,成功删除 {deleted_count} 张重复图片')
        logging.info(f'去重完成,保留 {len(to_keep)} 张图片,成功删除 {deleted_count} 张重复图片')

        return deleted_count

    # 开始执行去重流程
    image_files = get_image_files(new_folder_path)
    image_data = process_images(image_files)
    similar_groups = compare_images(image_data)
    to_keep = select_images_to_keep(similar_groups, image_data)
    deleted_count = delete_duplicate_images(similar_groups, to_keep)


def waifuc_split(new_folder_path, split_path):
    """

    使用 waifuc 库对图像进行分割,提取人物部分。



    参数:

        new_folder_path (str): 原始图像文件夹路径。

        split_path (str): 分割后图像的保存路径。

    """
    # 直接使用目录路径初始化 LocalSource
    s = LocalSource(new_folder_path)
    s = s.attach(
        PersonSplitAction(), MinSizeFilterAction(300),
    )
    s.export(SaveExporter(split_path, no_meta=True))


def process_split_images(new_folder_path, split_path):
    """

    将没有检测到人物的原始图像移动到指定的无人文件夹。



    参数:

        new_folder_path (str): 原始图像文件夹路径。

        split_path (str): 分割后图像的保存路径。

    """
    nohuman_path = create_output_folder(new_folder_path, "-nohuman")

    # 获取去重后的原始图片列表
    original_images = [f for f in os.listdir(new_folder_path)
                       if os.path.isfile(os.path.join(new_folder_path, f)) and
                       f.lower().endswith(('.jpg', '.jpeg', '.png', '.webp'))]

    split_images = [f for f in os.listdir(split_path)
                    if f.lower().endswith(('.jpg', '.jpeg', '.png', '.webp'))]

    total_images = len(original_images)
    moved_count = 0

    for original_image in tqdm(original_images, desc="处理无人图片", unit="张"):
        base_name = os.path.splitext(original_image)[0]
        has_person = any(split_image.startswith(base_name + '_person') for split_image in split_images)

        if not has_person:
            source_path = os.path.join(new_folder_path, original_image)
            dest_path = os.path.join(nohuman_path, original_image)
            try:
                shutil.move(source_path, dest_path)
                moved_count += 1
            except Exception as e:
                print(f"\n无法移动 {source_path}: {e}")
                logging.error(f"无法移动 {source_path}: {e}")

    print(f'\n处理完成。总共处理 {total_images} 张图片, 移动了 {moved_count} 张无人图片到 {nohuman_path}')
    logging.info(f'处理完成。总共处理 {total_images} 张图片, 移动了 {moved_count} 张无人图片到 {nohuman_path}')


def main():
    """

    主函数,执行整个处理流程。

    """
    folder_path = select_folder()
    if not folder_path:
        print("未选择文件夹,程序退出。")
        logging.error("未选择文件夹,程序退出。")
        return

    video_files = find_video_files(folder_path)
    if not video_files:
        print("所选文件夹中未找到视频文件,程序退出。")
        logging.error("所选文件夹中未找到视频文件,程序退出。")
        return

    # 创建保存提取帧的文件夹
    new_folder_path = create_output_folder(folder_path, "-Eng_SS")

    # 处理每个视频文件
    for video_file in video_files:
        print(f"开始处理视频文件: {video_file}")
        logging.info(f"开始处理视频文件: {video_file}")
        process_video(video_file, new_folder_path, frame_step=5)  # 设置帧步长

    # 去除相似的重复图片(第一次)
    process_images_folder(new_folder_path)
    # 去除相似的重复图片(第二次)
    process_images_folder(new_folder_path)

    # 创建保存分割后图像的文件夹
    split_path = create_output_folder(new_folder_path, "-split")

    # 使用 waifuc 库进行人物分割
    waifuc_split(new_folder_path, split_path)

    # 移动没有检测到人物的图像到无人文件夹
    process_split_images(new_folder_path, split_path)


if __name__ == "__main__":
    main()