audio
audioduration (s) 0.83
21
| transcription
stringlengths 3
127
| LaTeX
stringlengths 7
142
| Source
stringclasses 89
values |
---|---|---|---|
ax plus by plus cz equals d | $ax + by + cz = d$ | https://www.youtube.com/watch?v=YBajUR3EFSM |
|
x plus 5y plus 10z equals zero | $x + 5y + 10z = 0$ | https://www.youtube.com/watch?v=YBajUR3EFSM |
|
x minus two y minus one and z plus one dot product with one, five, ten | $[x-2,y-1,z+1]\cdot[1,5,10]$ | https://www.youtube.com/watch?v=YBajUR3EFSM |
|
x minus two plus five times y minus one plus ten times z plus one equals zero | $ (x - 2) + 5(y - 1) + 10(z + 1) = 0 $ | https://www.youtube.com/watch?v=YBajUR3EFSM |
|
Ax plus By plus Cz equals D | $Ax + By + Cz = D$ | https://www.youtube.com/watch?v=YBajUR3EFSM |
|
x plus y plus three z equals five | $x + y + 3z = 5$ | https://www.youtube.com/watch?v=YBajUR3EFSM |
|
x plus z equals one | $x + z = 1$ | https://www.youtube.com/watch?v=YBajUR3EFSM |
|
x plus y equals two | $x + y = 2$ | https://www.youtube.com/watch?v=YBajUR3EFSM |
|
A inverse is one over determinant of A times the adjoint matrix | $A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A)$ | https://www.youtube.com/watch?v=YBajUR3EFSM |
|
X equals A inverse B | $X = A^{-1}B$ | https://www.youtube.com/watch?v=YBajUR3EFSM |
|
log two minus log one | $\log2-\log1$ | https://www.youtube.com/watch?v=zUEuKrxgHws |
|
b minus a over n | $\frac{b - a}{n}$ | https://www.youtube.com/watch?v=zUEuKrxgHws |
|
a half times one plus two thirds plus a half times a half | $1/2\cdot1+2/3+1/2\cdot1/2$ | https://www.youtube.com/watch?v=zUEuKrxgHws |
|
y0 plus 4y1 plus y2 | $\displaystyle y_0 + 4y_1 + y_2$ | https://www.youtube.com/watch?v=zUEuKrxgHws |
|
a half plus n minus 1 plus a half | $\frac{1}{2}+n-1+\frac{1}{2}$ | https://www.youtube.com/watch?v=zUEuKrxgHws |
|
two pi r e to the minus r squared dr | $2\pi r e^{-r^2} dr$ | https://www.youtube.com/watch?v=zUEuKrxgHws |
|
pi minus pi e to the minus r squared | $\pi - \pi e^{-r^2}$ | https://www.youtube.com/watch?v=zUEuKrxgHws |
|
square root of pi over 2 | $\frac{\sqrt{\pi}}{2}$ | https://www.youtube.com/watch?v=zUEuKrxgHws |
|
e to the minus b squared plus x squared | $e^{-(b^2 + x^2)}$ | https://www.youtube.com/watch?v=zUEuKrxgHws |
|
e to the minus b squared times e to the minus x squared | $e^{-b^2} e^{-x^2}$ | https://www.youtube.com/watch?v=zUEuKrxgHws |
|
minus b squared times the integral from minus infinity to infinity of e to the minus x squared dx | $\displaystyle -b^2 \int_{-\infty}^{\infty} e^{-x^2} \, dx$ | https://www.youtube.com/watch?v=zUEuKrxgHws |
|
integral from minus infinity to infinity e to the minus y squared dy | $\displaystyle \int_{-\infty}^{\infty} e^{-y^2} dy$ | https://www.youtube.com/watch?v=zUEuKrxgHws |
|
pi x2 squared minus x1 squared | $\pi ({x_2}^{2} - {x_1}^{2})$ | https://www.youtube.com/watch?v=zUEuKrxgHws |
|
h of x equal to sine of x plus square root of 3 times cosine of x | $h(x) = \sin(x) + \sqrt{3} \cos(x)$ | https://www.youtube.com/watch?v=Bb-bgJdOqig |
|
cosine x minus square root of 3 times sine x | $\cos(x) - \sqrt{3} \sin(x)$ | https://www.youtube.com/watch?v=Bb-bgJdOqig |
|
square root of 3 times tan x | $\sqrt{3} \tan(x)$ | https://www.youtube.com/watch?v=Bb-bgJdOqig |
|
tan of x is equal to one divided by square root of three | $\tan(x) = \frac{1}{\sqrt{3}}$ | https://www.youtube.com/watch?v=Bb-bgJdOqig |
|
pi over 6 | $\frac{\pi}{6}$ | https://www.youtube.com/watch?v=Bb-bgJdOqig |
|
pi over 6 plus pi | $\frac{\pi}{6} + \pi$ | https://www.youtube.com/watch?v=Bb-bgJdOqig |
|
minus five pi over six | $-\frac{5\pi}{6}$ | https://www.youtube.com/watch?v=Bb-bgJdOqig |
|
pi over 6 minus pi | $\frac{\pi}{6} - \pi$ | https://www.youtube.com/watch?v=Bb-bgJdOqig |
|
sine of x plus square root of 3 times cosine x | $\sin(x) + \sqrt{3} \cos(x)$ | https://www.youtube.com/watch?v=Bb-bgJdOqig |
|
h of x equals two times one-half sine x plus square root of three over two | $h(x) = 2 \frac{1}{2} \sin(x) + \frac{\sqrt{3}}{2}$ | https://www.youtube.com/watch?v=Bb-bgJdOqig |
|
pi over 3 sine x plus sine pi over 3 cosine x | $\displaystyle \frac{\pi}{3} \sin(x) + \sin\frac{\pi}{3} \cos(x)$ | https://www.youtube.com/watch?v=Bb-bgJdOqig |
|
two times sine of x plus pi over three | $2\sin(x) + \frac{\pi}{3}$ | https://www.youtube.com/watch?v=Bb-bgJdOqig |
|
x equals minus pi over three | $x = -\frac{\pi}{3}$ | https://www.youtube.com/watch?v=Bb-bgJdOqig |
|
x equals 7 pi over 6 | $x = 7\pi/6$ | https://www.youtube.com/watch?v=Bb-bgJdOqig |
|
pi over 2 minus pi over 3 is pi over 6 | $\pi/2 - \pi/3 = \pi/6$ | https://www.youtube.com/watch?v=Bb-bgJdOqig |
|
negative sine x times x squared times the sine x | $- \sin x \cdot x^{2} \cdot \sin x$ | https://www.youtube.com/watch?v=55ncRlBZstA |
|
cosine x cosine x is cosine squared x | $\cos x \cos x = \cos^{2}x$ | https://www.youtube.com/watch?v=55ncRlBZstA |
|
minus x squared sine squared x | $ -x^2 \sin^{2}x$ | https://www.youtube.com/watch?v=55ncRlBZstA |
|
dy dx times dx dw times dw d theta | $ \frac{dy}{dx} \times \frac{dx}{dw} \times \frac{dw}{d\theta} $ | https://www.youtube.com/watch?v=aeQA5d3gZTI |
|
dw d theta is four theta to the third | $\frac{dw}{d\theta} = 4\theta^{3}$ | https://www.youtube.com/watch?v=aeQA5d3gZTI |
|
cosine of theta to the fourth | $\cos(\theta^{4})$ | https://www.youtube.com/watch?v=aeQA5d3gZTI |
|
two cosine of theta to the fourth times negative sine | $2\cos(\theta^{4}) (-\sin) $ | https://www.youtube.com/watch?v=aeQA5d3gZTI |
|
cosine of pi over two is equal to zero | $\cos(\pi/2) = 0$ | https://www.youtube.com/watch?v=aeQA5d3gZTI |
|
theta to the fourth equals pi over two | $ \theta^{4} = \frac{\pi}{2} $ | https://www.youtube.com/watch?v=aeQA5d3gZTI |
|
theta is equal to pi over 2 to the 1 4th | $\theta = (\frac{\pi}{2}) ^ \frac{1}{4}$ | https://www.youtube.com/watch?v=aeQA5d3gZTI |
|
y cubed plus x cubed equals three xy | $y^{3} + x^{3} = 3xy$ | https://www.youtube.com/watch?v=fK6cu99OSEU |
|
four thirds cubed plus two thirds cubed is equal to three times two thirds times four thirds | $(4/3)^{3}+(2/3)^{3}=3\times(2/3)\times(4/3)$ | https://www.youtube.com/watch?v=fK6cu99OSEU |
|
y minus x squared over y squared minus x | $ \frac{y - x^{2}} {y^{2} - x}$ | https://www.youtube.com/watch?v=fK6cu99OSEU |
|
6 minus 16 over 4 minus 12 | $\frac{6 - 16}{4 - 12}$ | https://www.youtube.com/watch?v=fK6cu99OSEU |
|
d over dx of tan x is equal to secant squared of x | $\frac{\mathrm{d}}{\mathrm{dx}}(\tan x) = \mathrm{\sec^2(x)}$ | https://www.youtube.com/watch?v=aYMt2ZVGd7g |
|
pi over two | $\frac{\pi}{2}$ | https://www.youtube.com/watch?v=aYMt2ZVGd7g |
|
y equals arctan x | $y = \arctan x$ | https://www.youtube.com/watch?v=aYMt2ZVGd7g |
|
dy dx is equal to minus 1 divided by sine y | $\frac{dy}{dx} = -\frac{1}{\sin y}$ | https://www.youtube.com/watch?v=cdRMY39EYbs |
|
square root of 1 minus x squared | $\sqrt{1 - x^{2}}$ | https://www.youtube.com/watch?v=cdRMY39EYbs |
|
f of x is equal to x to the pi plus pi to the x | $f(x) = x^{\pi} + \pi^{x}$ | https://www.youtube.com/watch?v=wezQdmwolMU |
|
g of x is equal to natural log of cosine of x | $g(x) = \ln(\cos(x))$ | https://www.youtube.com/watch?v=wezQdmwolMU |
|
pi times x to the pi minus 1 | $\pi x^{\pi - 1}$ | https://www.youtube.com/watch?v=wezQdmwolMU |
|
x times pi to the x minus 1 | $x \cdot \pi^{x-1}$ | https://www.youtube.com/watch?v=wezQdmwolMU |
|
1 over cosine x | $\frac{1}{\cos x}$ | https://www.youtube.com/watch?v=wezQdmwolMU |
|
e to the x squared | $\mathrm{e}^{x^{2}}$ | https://www.youtube.com/watch?v=wezQdmwolMU |
|
natural log of e to the x squared | $\ln(e^{x^{2}})$ | https://www.youtube.com/watch?v=wezQdmwolMU |
|
x squared times natural log of e | $x^{2}\cdot\ln e$ | https://www.youtube.com/watch?v=wezQdmwolMU |
|
natural log of e is equal to 1 | $\ln(e)=1$ | https://www.youtube.com/watch?v=wezQdmwolMU |
|
natural log of m times n is equal to the natural log of m plus natural log of n | $\ln(mn) = \ln(m) + \ln(n)$ | https://www.youtube.com/watch?v=9YgOmJdom6o |
|
e to the a equals m | $e^\mathrm{a} = m$ | https://www.youtube.com/watch?v=9YgOmJdom6o |
|
a is equal to natural log of m | $a=\ln m$ | https://www.youtube.com/watch?v=9YgOmJdom6o |
|
natural log of e to the a plus b | $\ln(e^{a+b})$ | https://www.youtube.com/watch?v=9YgOmJdom6o |
|
natural log of e to the x is x | $\ln(e^{x}) = x$ | https://www.youtube.com/watch?v=9YgOmJdom6o |
|
1 half natural log x plus 1 half | $\frac{1}{2}\ln x + \frac{1}{2}$ | https://www.youtube.com/watch?v=9YgOmJdom6o |
|
1 over 2x plus 1 over 2 times x plus 4 | $\frac{1}{2x} + \frac{1}{2(x + 4)}$ | https://www.youtube.com/watch?v=9YgOmJdom6o |
|
e to the x plus e to the minus x | $e^{x} + e^{-x}$ | https://www.youtube.com/watch?v=er_tQOBgo-I |
|
1 plus x squared | $1 + x^2$ | https://www.youtube.com/watch?v=er_tQOBgo-I |
|
1 plus 1 over 2 | $1 + \frac{1}{2}$ | https://www.youtube.com/watch?v=er_tQOBgo-I |
|
e to the x minus e to the minus x over 2 | $e^{x} - e^{-x} \over 2$ | https://www.youtube.com/watch?v=er_tQOBgo-I |
|
x squared plus y squared equals 1 | $x^{2} + y^{2} = 1$ | https://www.youtube.com/watch?v=er_tQOBgo-I |
|
x squared minus y squared | $x^{2} - y^{2}$ | https://www.youtube.com/watch?v=er_tQOBgo-I |
|
cosh squared u | $\cosh^{2}u$ | https://www.youtube.com/watch?v=er_tQOBgo-I |
|
e to the u plus e to the minus u over 2 quantity squared | $(\frac{e^{u} + e^{-u}}{2})^2$ | https://www.youtube.com/watch?v=er_tQOBgo-I |
|
e to the u minus e to the minus u over 2 quantity squared | $( \frac {e^{u} - e^{-u}} {2} )^2$ | https://www.youtube.com/watch?v=er_tQOBgo-I |
|
2 times e to the u times e to the minus u | $2 e^{u}e^{-u}$ | https://www.youtube.com/watch?v=er_tQOBgo-I |
|
2 plus e to the minus 2u minus e to the 2u minus 2 | $2 + e^{-2u} - e^{2u} - 2$ | https://www.youtube.com/watch?v=er_tQOBgo-I |
|
w of x plus one | $\displaystyle w(x) + 1$ | https://www.youtube.com/watch?v=8gGbViZjoRw |
|
w of x plus 2 times e to the w of x | $w(x) + 2e^{w(x)}$ | https://www.youtube.com/watch?v=8gGbViZjoRw |
|
1 over w of x plus 2 times e to the w of x | $\frac{1}{w(x)} + 2e^{w(x)}$ | https://www.youtube.com/watch?v=8gGbViZjoRw |
|
w of one plus two times e to the w of one | $w(1) + 2 e^{w(1)}$ | https://www.youtube.com/watch?v=8gGbViZjoRw |
|
1 half times x minus 1 | $\frac{1}{2}(x - 1)$ | https://www.youtube.com/watch?v=8gGbViZjoRw |
|
1 over x0 plus delta x | $ \frac{1}{x_{0} +\Delta x}$ | https://www.youtube.com/watch?v=7K1sB05pE0A |
|
minus 1 over x0 plus delta x times x0 | $\displaystyle-\frac{1}{x_{0} + \Delta x x_{0}}$ | https://www.youtube.com/watch?v=7K1sB05pE0A |
|
minus 1 over 3 plus delta x times 3 | $-\frac{1}{3} + \Delta x \times 3$ | https://www.youtube.com/watch?v=7K1sB05pE0A |
|
minus 1 over x0 squared x minus x0 | $-\frac{1}{x_{0}^{2}}(x-x_{0})$ | https://www.youtube.com/watch?v=7K1sB05pE0A |
|
delta f is x plus delta x to the n minus x to the n divided by delta x | $\displaystyle \Delta f = \frac{(x + \Delta x)^{n} - x^{n}}{\Delta x}$ | https://www.youtube.com/watch?v=7K1sB05pE0A |
|
x to the n plus n x to the n minus 1 delta x | $x^{n}+nx^{n-1}\Delta x$ | https://www.youtube.com/watch?v=7K1sB05pE0A |
|
n x to the n minus one | $nx^{n-1}$ | https://www.youtube.com/watch?v=7K1sB05pE0A |
|
minus 1 over x squared | $-\frac{1}{x^{2}}$ | https://www.youtube.com/watch?v=ryLdyDrBfvI |
|
x plus 3 over x squared plus 1 | $\frac{x + 3}{x^{2} + 1}$ | https://www.youtube.com/watch?v=ryLdyDrBfvI |
|
4 plus 3 divided by 4 squared plus 1 | $\frac{4+3}{4^{2}+1}$ | https://www.youtube.com/watch?v=ryLdyDrBfvI |
|
1 minus cosine x over x | $\frac{1 - \cos x}{x}$ | https://www.youtube.com/watch?v=ryLdyDrBfvI |