matthayes commited on
Commit
b7fbc6d
·
1 Parent(s): 814dbfe

add pipeline

Browse files
Files changed (2) hide show
  1. config.json +7 -0
  2. instruct_pipeline.py +165 -0
config.json CHANGED
@@ -3,6 +3,13 @@
3
  "architectures": [
4
  "GPTNeoXForCausalLM"
5
  ],
 
 
 
 
 
 
 
6
  "bos_token_id": 0,
7
  "eos_token_id": 0,
8
  "hidden_act": "gelu",
 
3
  "architectures": [
4
  "GPTNeoXForCausalLM"
5
  ],
6
+ "custom_pipelines": {
7
+ "instruction-following": {
8
+ "impl": "instruct_pipeline.InstructionTextGenerationPipeline",
9
+ "pt": "AutoModelForCausalLM",
10
+ "tf": "TFAutoModelForCausalLM"
11
+ }
12
+ },
13
  "bos_token_id": 0,
14
  "eos_token_id": 0,
15
  "hidden_act": "gelu",
instruct_pipeline.py ADDED
@@ -0,0 +1,165 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ import re
3
+
4
+ import numpy as np
5
+ from transformers import Pipeline, PreTrainedTokenizer
6
+
7
+ logger = logging.getLogger(__name__)
8
+
9
+ INSTRUCTION_KEY = "### Instruction:"
10
+ RESPONSE_KEY = "### Response:"
11
+ END_KEY = "### End"
12
+ INTRO_BLURB = (
13
+ "Below is an instruction that describes a task. Write a response that appropriately completes the request."
14
+ )
15
+
16
+ # This is the prompt that is used for generating responses using an already trained model. It ends with the response
17
+ # key, where the job of the model is to provide the completion that follows it (i.e. the response itself).
18
+ PROMPT_FOR_GENERATION_FORMAT = """{intro}
19
+
20
+ {instruction_key}
21
+ {instruction}
22
+
23
+ {response_key}
24
+ """.format(
25
+ intro=INTRO_BLURB,
26
+ instruction_key=INSTRUCTION_KEY,
27
+ instruction="{instruction}",
28
+ response_key=RESPONSE_KEY,
29
+ )
30
+
31
+
32
+ def get_special_token_id(tokenizer: PreTrainedTokenizer, key: str) -> int:
33
+ """Gets the token ID for a given string that has been added to the tokenizer as a special token.
34
+
35
+ When training, we configure the tokenizer so that the sequences like "### Instruction:" and "### End" are
36
+ treated specially and converted to a single, new token. This retrieves the token ID each of these keys map to.
37
+
38
+ Args:
39
+ tokenizer (PreTrainedTokenizer): the tokenizer
40
+ key (str): the key to convert to a single token
41
+
42
+ Raises:
43
+ RuntimeError: if more than one ID was generated
44
+
45
+ Returns:
46
+ int: the token ID for the given key
47
+ """
48
+ token_ids = tokenizer.encode(key)
49
+ if len(token_ids) > 1:
50
+ raise ValueError(f"Expected only a single token for '{key}' but found {token_ids}")
51
+ return token_ids[0]
52
+
53
+
54
+ class InstructionTextGenerationPipeline(Pipeline):
55
+ def __init__(
56
+ self, *args, do_sample: bool = True, max_new_tokens: int = 256, top_p: float = 0.92, top_k: int = 0, **kwargs
57
+ ):
58
+ super().__init__(*args, do_sample=do_sample, max_new_tokens=max_new_tokens, top_p=top_p, top_k=top_k, **kwargs)
59
+
60
+ def _sanitize_parameters(self, return_instruction_text=False, **generate_kwargs):
61
+ preprocess_params = {}
62
+
63
+ # newer versions of the tokenizer configure the response key as a special token. newer versions still may
64
+ # append a newline to yield a single token. find whatever token is configured for the response key.
65
+ tokenizer_response_key = next(
66
+ (token for token in self.tokenizer.additional_special_tokens if token.startswith(RESPONSE_KEY)), None
67
+ )
68
+
69
+ response_key_token_id = None
70
+ end_key_token_id = None
71
+ if tokenizer_response_key:
72
+ try:
73
+ response_key_token_id = get_special_token_id(self.tokenizer, tokenizer_response_key)
74
+ end_key_token_id = get_special_token_id(self.tokenizer, END_KEY)
75
+
76
+ # Ensure generation stops once it generates "### End"
77
+ generate_kwargs["eos_token_id"] = end_key_token_id
78
+ except ValueError:
79
+ pass
80
+
81
+ forward_params = generate_kwargs
82
+ postprocess_params = {
83
+ "response_key_token_id": response_key_token_id,
84
+ "end_key_token_id": end_key_token_id,
85
+ "return_instruction_text": return_instruction_text,
86
+ }
87
+
88
+ return preprocess_params, forward_params, postprocess_params
89
+
90
+ def preprocess(self, instruction_text, **generate_kwargs):
91
+ prompt_text = PROMPT_FOR_GENERATION_FORMAT.format(instruction=instruction_text)
92
+ inputs = self.tokenizer(
93
+ prompt_text,
94
+ return_tensors="pt",
95
+ )
96
+ inputs["prompt_text"] = prompt_text
97
+ inputs["instruction_text"] = instruction_text
98
+ return inputs
99
+
100
+ def _forward(self, model_inputs, **generate_kwargs):
101
+ input_ids = model_inputs["input_ids"]
102
+ attention_mask = model_inputs.get("attention_mask", None)
103
+ generated_sequence = self.model.generate(
104
+ input_ids=input_ids.to(self.model.device),
105
+ attention_mask=attention_mask,
106
+ pad_token_id=self.tokenizer.pad_token_id,
107
+ **generate_kwargs,
108
+ )[0].cpu()
109
+ instruction_text = model_inputs.pop("instruction_text")
110
+ return {"generated_sequence": generated_sequence, "input_ids": input_ids, "instruction_text": instruction_text}
111
+
112
+ def postprocess(self, model_outputs, response_key_token_id, end_key_token_id, return_instruction_text):
113
+ sequence = model_outputs["generated_sequence"]
114
+ instruction_text = model_outputs["instruction_text"]
115
+
116
+ # The response will be set to this variable if we can identify it.
117
+ decoded = None
118
+
119
+ # If we have token IDs for the response and end, then we can find the tokens and only decode between them.
120
+ if response_key_token_id and end_key_token_id:
121
+ # Find where "### Response:" is first found in the generated tokens. Considering this is part of the
122
+ # prompt, we should definitely find it. We will return the tokens found after this token.
123
+ response_pos = None
124
+ response_positions = np.where(sequence == response_key_token_id)[0]
125
+ if len(response_positions) == 0:
126
+ logger.warn(f"Could not find response key {response_key_token_id} in: {sequence}")
127
+ else:
128
+ response_pos = response_positions[0]
129
+
130
+ if response_pos:
131
+ # Next find where "### End" is located. The model has been trained to end its responses with this
132
+ # sequence (or actually, the token ID it maps to, since it is a special token). We may not find
133
+ # this token, as the response could be truncated. If we don't find it then just return everything
134
+ # to the end. Note that even though we set eos_token_id, we still see the this token at the end.
135
+ end_pos = None
136
+ end_positions = np.where(sequence == end_key_token_id)[0]
137
+ if len(end_positions) > 0:
138
+ end_pos = end_positions[0]
139
+
140
+ decoded = self.tokenizer.decode(sequence[response_pos + 1 : end_pos]).strip()
141
+ else:
142
+ # Otherwise we'll decode everything and use a regex to find the response and end.
143
+
144
+ fully_decoded = self.tokenizer.decode(sequence)
145
+
146
+ # The response appears after "### Response:". The model has been trained to append "### End" at the
147
+ # end.
148
+ m = re.search(r"#+\s*Response:\s*(.+?)#+\s*End", fully_decoded, flags=re.DOTALL)
149
+
150
+ if m:
151
+ decoded = m.group(1).strip()
152
+ else:
153
+ # The model might not generate the "### End" sequence before reaching the max tokens. In this case,
154
+ # return everything after "### Response:".
155
+ m = re.search(r"#+\s*Response:\s*(.+)", fully_decoded, flags=re.DOTALL)
156
+ if m:
157
+ decoded = m.group(1).strip()
158
+ else:
159
+ logger.warn(f"Failed to find response in:\n{fully_decoded}")
160
+
161
+ if return_instruction_text:
162
+ return {"instruction_text": instruction_text, "generated_text": decoded}
163
+
164
+ return decoded
165
+