Muennighoff
commited on
Commit
·
5c159b1
1
Parent(s):
2e29a11
Add eval
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +25 -0
- 8b7178b25b/evaluation/generation/agg.8b7178b25b_GEM-web_nlg_en_PALM_prompt_0.json +1 -0
- 8b7178b25b/evaluation/generation/agg.8b7178b25b_GEM-web_nlg_en_PALM_prompt_1.json +1 -0
- 8b7178b25b/evaluation/generation/agg.8b7178b25b_GEM-web_nlg_en_PALM_prompt_2.json +1 -0
- 8b7178b25b/evaluation/generation/agg.8b7178b25b_GEM-web_nlg_en_PALM_prompt_3.json +1 -0
- 8b7178b25b/evaluation/generation/agg.8b7178b25b_GEM-web_nlg_en_PALM_prompt_4.json +1 -0
- 8b7178b25b/evaluation/generation/agg.8b7178b25b_GEM-web_nlg_en_PALM_prompt_5.json +1 -0
- 8b7178b25b/evaluation/generation/agg.8b7178b25b_GEM-wiki_lingua_en_tldr_en_0.json +1 -0
- 8b7178b25b/evaluation/generation/agg.8b7178b25b_GEM-wiki_lingua_en_tldr_en_1.json +1 -0
- 8b7178b25b/evaluation/generation/agg.8b7178b25b_e2e_nlg_cleaned_generate_text_restaurant_0.json +1 -0
- 8b7178b25b/evaluation/generation/agg.8b7178b25b_e2e_nlg_cleaned_generate_text_restaurant_1.json +1 -0
- 8b7178b25b/evaluation/generation/agg.8b7178b25b_e2e_nlg_cleaned_generate_text_restaurant_2.json +1 -0
- 8b7178b25b/evaluation/generation/agg.8b7178b25b_e2e_nlg_cleaned_generate_text_restaurant_3.json +1 -0
- 8b7178b25b/evaluation/generation/agg.8b7178b25b_e2e_nlg_cleaned_generate_text_restaurant_4.json +1 -0
- 8b7178b25b/evaluation/generation/agg.8b7178b25b_e2e_nlg_cleaned_generate_text_restaurant_5.json +1 -0
- 8b7178b25b/evaluation/generation/agg.8b7178b25b_gem_xsum_article_DOC_summary_0.json +1 -0
- 8b7178b25b/evaluation/generation/agg.8b7178b25b_gem_xsum_article_DOC_summary_1.json +1 -0
- 8b7178b25b/evaluation/generation/agg.8b7178b25b_gem_xsum_article_DOC_summary_2.json +1 -0
- 8b7178b25b/evaluation/generation/examples.8b7178b25b_GEM-web_nlg_en_PALM_prompt_0.jsonl +3 -0
- 8b7178b25b/evaluation/generation/examples.8b7178b25b_GEM-web_nlg_en_PALM_prompt_1.jsonl +3 -0
- 8b7178b25b/evaluation/generation/examples.8b7178b25b_GEM-web_nlg_en_PALM_prompt_2.jsonl +3 -0
- 8b7178b25b/evaluation/generation/examples.8b7178b25b_GEM-web_nlg_en_PALM_prompt_3.jsonl +3 -0
- 8b7178b25b/evaluation/generation/examples.8b7178b25b_GEM-web_nlg_en_PALM_prompt_4.jsonl +3 -0
- 8b7178b25b/evaluation/generation/examples.8b7178b25b_GEM-web_nlg_en_PALM_prompt_5.jsonl +3 -0
- 8b7178b25b/evaluation/generation/examples.8b7178b25b_GEM-wiki_lingua_en_tldr_en_0.jsonl +3 -0
- 8b7178b25b/evaluation/generation/examples.8b7178b25b_GEM-wiki_lingua_en_tldr_en_1.jsonl +3 -0
- 8b7178b25b/evaluation/generation/examples.8b7178b25b_GEM-wiki_lingua_en_tldr_en_2.jsonl +0 -0
- 8b7178b25b/evaluation/generation/examples.8b7178b25b_GEM-wiki_lingua_en_tldr_en_3.jsonl +0 -0
- 8b7178b25b/evaluation/generation/examples.8b7178b25b_GEM-wiki_lingua_en_tldr_en_4.jsonl +0 -0
- 8b7178b25b/evaluation/generation/examples.8b7178b25b_GEM-wiki_lingua_en_tldr_en_5.jsonl +0 -0
- 8b7178b25b/evaluation/generation/examples.8b7178b25b_e2e_nlg_cleaned_generate_text_restaurant_0.jsonl +3 -0
- 8b7178b25b/evaluation/generation/examples.8b7178b25b_e2e_nlg_cleaned_generate_text_restaurant_1.jsonl +3 -0
- 8b7178b25b/evaluation/generation/examples.8b7178b25b_e2e_nlg_cleaned_generate_text_restaurant_2.jsonl +3 -0
- 8b7178b25b/evaluation/generation/examples.8b7178b25b_e2e_nlg_cleaned_generate_text_restaurant_3.jsonl +3 -0
- 8b7178b25b/evaluation/generation/examples.8b7178b25b_e2e_nlg_cleaned_generate_text_restaurant_4.jsonl +3 -0
- 8b7178b25b/evaluation/generation/examples.8b7178b25b_e2e_nlg_cleaned_generate_text_restaurant_5.jsonl +3 -0
- 8b7178b25b/evaluation/generation/examples.8b7178b25b_gem_xsum_article_DOC_summary_0.jsonl +3 -0
- 8b7178b25b/evaluation/generation/examples.8b7178b25b_gem_xsum_article_DOC_summary_1.jsonl +3 -0
- 8b7178b25b/evaluation/generation/examples.8b7178b25b_gem_xsum_article_DOC_summary_2.jsonl +3 -0
- 8b7178b25b/evaluation/generation/examples.8b7178b25b_gem_xsum_article_DOC_summary_3.jsonl +0 -0
- 8b7178b25b/evaluation/generation/examples.8b7178b25b_gem_xsum_article_DOC_summary_4.jsonl +0 -0
- 8b7178b25b/evaluation/generation/examples.8b7178b25b_gem_xsum_article_DOC_summary_5.jsonl +0 -0
- 8b7178b25b/evaluation/generation/merged.csv +39 -0
- 8b7178b25b/evaluation/generation/merged.json +1 -0
- 8b7178b25b/evaluation/generation/slim.8b7178b25b_GEM-web_nlg_en_PALM_prompt_0.json +133 -0
- 8b7178b25b/evaluation/generation/slim.8b7178b25b_GEM-web_nlg_en_PALM_prompt_1.json +133 -0
- 8b7178b25b/evaluation/generation/slim.8b7178b25b_GEM-web_nlg_en_PALM_prompt_2.json +133 -0
- 8b7178b25b/evaluation/generation/slim.8b7178b25b_GEM-web_nlg_en_PALM_prompt_3.json +133 -0
- 8b7178b25b/evaluation/generation/slim.8b7178b25b_GEM-web_nlg_en_PALM_prompt_4.json +133 -0
- 8b7178b25b/evaluation/generation/slim.8b7178b25b_GEM-web_nlg_en_PALM_prompt_5.json +133 -0
.gitattributes
CHANGED
@@ -128,3 +128,28 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
128 |
8b7178b35b/evaluation/generation/examples.8b7178b35b_GEM-wiki_lingua_en_tldr_en_0.jsonl filter=lfs diff=lfs merge=lfs -text
|
129 |
8b7178b35b/evaluation/generation/examples.8b7178b35b_gem_xsum_article_DOC_summary_2.jsonl filter=lfs diff=lfs merge=lfs -text
|
130 |
8b7178b35b/evaluation/generation/examples.global_step84877_gem_xsum_article_DOC_summary_1.jsonl filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
8b7178b35b/evaluation/generation/examples.8b7178b35b_GEM-wiki_lingua_en_tldr_en_0.jsonl filter=lfs diff=lfs merge=lfs -text
|
129 |
8b7178b35b/evaluation/generation/examples.8b7178b35b_gem_xsum_article_DOC_summary_2.jsonl filter=lfs diff=lfs merge=lfs -text
|
130 |
8b7178b35b/evaluation/generation/examples.global_step84877_gem_xsum_article_DOC_summary_1.jsonl filter=lfs diff=lfs merge=lfs -text
|
131 |
+
*/evaluation/examples*.jsonl filter=lfs diff=lfs merge=lfs -text
|
132 |
+
8b7178b25b/evaluation/generation/examples.8b7178b25b_gem_xsum_article_DOC_summary_0.jsonl filter=lfs diff=lfs merge=lfs -text
|
133 |
+
8b7178b25b/evaluation/generation/examples.8b7178b25b_GEM-web_nlg_en_PALM_prompt_1.jsonl filter=lfs diff=lfs merge=lfs -text
|
134 |
+
8b7178b25b/evaluation/generation/examples.8b7178b25b_GEM-web_nlg_en_PALM_prompt_2.jsonl filter=lfs diff=lfs merge=lfs -text
|
135 |
+
8b7178b25b/evaluation/generation/examples.8b7178b25b_GEM-web_nlg_en_PALM_prompt_3.jsonl filter=lfs diff=lfs merge=lfs -text
|
136 |
+
8b7178b25b/evaluation/generation/examples.8b7178b25b_GEM-wiki_lingua_en_tldr_en_3.jsonl filter=lfs diff=lfs merge=lfs -text
|
137 |
+
8b7178b25b/evaluation/generation/examples.8b7178b25b_GEM-wiki_lingua_en_tldr_en_5.jsonl filter=lfs diff=lfs merge=lfs -text
|
138 |
+
8b7178b25b/evaluation/generation/examples.8b7178b25b_e2e_nlg_cleaned_generate_text_restaurant_0.jsonl filter=lfs diff=lfs merge=lfs -text
|
139 |
+
8b7178b25b/evaluation/generation/examples.8b7178b25b_e2e_nlg_cleaned_generate_text_restaurant_2.jsonl filter=lfs diff=lfs merge=lfs -text
|
140 |
+
8b7178b25b/evaluation/generation/examples.8b7178b25b_gem_xsum_article_DOC_summary_5.jsonl filter=lfs diff=lfs merge=lfs -text
|
141 |
+
8b7178b25b/evaluation/generation/examples.8b7178b25b_GEM-web_nlg_en_PALM_prompt_0.jsonl filter=lfs diff=lfs merge=lfs -text
|
142 |
+
8b7178b25b/evaluation/generation/examples.8b7178b25b_GEM-web_nlg_en_PALM_prompt_5.jsonl filter=lfs diff=lfs merge=lfs -text
|
143 |
+
8b7178b25b/evaluation/generation/examples.8b7178b25b_e2e_nlg_cleaned_generate_text_restaurant_1.jsonl filter=lfs diff=lfs merge=lfs -text
|
144 |
+
8b7178b25b/evaluation/generation/examples.8b7178b25b_e2e_nlg_cleaned_generate_text_restaurant_5.jsonl filter=lfs diff=lfs merge=lfs -text
|
145 |
+
8b7178b25b/evaluation/generation/examples.8b7178b25b_GEM-wiki_lingua_en_tldr_en_2.jsonl filter=lfs diff=lfs merge=lfs -text
|
146 |
+
8b7178b25b/evaluation/generation/examples.8b7178b25b_GEM-wiki_lingua_en_tldr_en_4.jsonl filter=lfs diff=lfs merge=lfs -text
|
147 |
+
8b7178b25b/evaluation/generation/examples.8b7178b25b_gem_xsum_article_DOC_summary_3.jsonl filter=lfs diff=lfs merge=lfs -text
|
148 |
+
8b7178b25b/evaluation/generation/examples.8b7178b25b_gem_xsum_article_DOC_summary_4.jsonl filter=lfs diff=lfs merge=lfs -text
|
149 |
+
8b7178b25b/evaluation/generation/examples.8b7178b25b_GEM-web_nlg_en_PALM_prompt_4.jsonl filter=lfs diff=lfs merge=lfs -text
|
150 |
+
8b7178b25b/evaluation/generation/examples.8b7178b25b_GEM-wiki_lingua_en_tldr_en_0.jsonl filter=lfs diff=lfs merge=lfs -text
|
151 |
+
8b7178b25b/evaluation/generation/examples.8b7178b25b_GEM-wiki_lingua_en_tldr_en_1.jsonl filter=lfs diff=lfs merge=lfs -text
|
152 |
+
8b7178b25b/evaluation/generation/examples.8b7178b25b_e2e_nlg_cleaned_generate_text_restaurant_3.jsonl filter=lfs diff=lfs merge=lfs -text
|
153 |
+
8b7178b25b/evaluation/generation/examples.8b7178b25b_e2e_nlg_cleaned_generate_text_restaurant_4.jsonl filter=lfs diff=lfs merge=lfs -text
|
154 |
+
8b7178b25b/evaluation/generation/examples.8b7178b25b_gem_xsum_article_DOC_summary_1.jsonl filter=lfs diff=lfs merge=lfs -text
|
155 |
+
8b7178b25b/evaluation/generation/examples.8b7178b25b_gem_xsum_article_DOC_summary_2.jsonl filter=lfs diff=lfs merge=lfs -text
|
8b7178b25b/evaluation/generation/agg.8b7178b25b_GEM-web_nlg_en_PALM_prompt_0.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "bleu": 0.33618386090404295, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.043286547374004225}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_precision": 0.07608115633976532, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0028424335866037475}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_recall": 0.243734587530279, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.005032751672173048}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_fmeasure": 0.09550360928926843, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0021611192824620468}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_precision": 0.03391274645846755, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0017782441786429572}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_recall": 0.11477361563470867, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0030177112931945443}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_fmeasure": 0.04353421604632926, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0013022741040944032}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_precision": 0.07249954185930807, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.002716866763111571}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_recall": 0.23447583587320983, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.004820896551192642}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_fmeasure": 0.0908905716888711, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0019748576875776485}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_precision": 0.07260565563718514, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0027622865524293628}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_recall": 0.2312007323793673, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.004666750865618609}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_fmeasure": 0.09063319866429098, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.002018782468480028}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-178b-oscar-repetitions/8b7178b25b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 0, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
8b7178b25b/evaluation/generation/agg.8b7178b25b_GEM-web_nlg_en_PALM_prompt_1.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "bleu": 0.5152510207869508, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.039697768768641464}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_precision": 0.1335251141437586, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.004421796872864802}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_recall": 0.3040669240102272, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.0049926465687368735}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_fmeasure": 0.15419793855600986, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0037752055082234935}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_precision": 0.06857339375782437, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0030273264083127568}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_recall": 0.1555986112064758, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0036341014671041087}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_fmeasure": 0.07820906828691397, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0026222161094111586}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_precision": 0.1195649771956543, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0038518942294089972}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_recall": 0.2838951533263151, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.004599064364517073}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_fmeasure": 0.13965714245032726, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0032487392690607572}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_precision": 0.12140487798820795, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.003915984273012587}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_recall": 0.2857833042522088, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.004601461544101827}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_fmeasure": 0.14150307262693815, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0033007395324502467}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-178b-oscar-repetitions/8b7178b25b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 1, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
8b7178b25b/evaluation/generation/agg.8b7178b25b_GEM-web_nlg_en_PALM_prompt_2.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "bleu": 0.6450721424031474, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.035938592978876936}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_precision": 0.17715496451419446, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.005377686826508908}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_recall": 0.3442204927205235, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.00499209962075588}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_fmeasure": 0.19228537050298922, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.004356183491682661}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_precision": 0.09659406582034752, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0036720254666308344}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_recall": 0.1816245156374427, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0038421174433974025}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_fmeasure": 0.1017490401630499, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.003080557280075834}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_precision": 0.15519367504713033, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.004580706449804959}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_recall": 0.31893881029765586, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.004597766706728441}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_fmeasure": 0.17158392384169643, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0037128302671958994}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_precision": 0.1592800915810083, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0047149524911017215}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_recall": 0.3221825821541532, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0046252310161258746}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_fmeasure": 0.17498254398589475, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0037985612156152086}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-178b-oscar-repetitions/8b7178b25b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 2, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
8b7178b25b/evaluation/generation/agg.8b7178b25b_GEM-web_nlg_en_PALM_prompt_3.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "bleu": 0.8785043636862591, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.02652000083973547}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_precision": 0.2002191357399255, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.005700191155087746}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_recall": 0.3622650735119951, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.005105318033672305}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_fmeasure": 0.21217682060449367, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.004581243352642801}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_precision": 0.10955905558045385, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0038849982073218873}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_recall": 0.19262377036723086, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.003902442560309681}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_fmeasure": 0.11312048852329888, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.003186877123824252}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_precision": 0.1744946205047383, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.004899868234689971}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_recall": 0.33190561350734876, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.004628476785750535}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_fmeasure": 0.1874319081280966, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0038899168243038715}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_precision": 0.17972186968155374, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.005058207025529124}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_recall": 0.33723235220496645, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0046889691038068775}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_fmeasure": 0.19207381785134825, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.004003703743860644}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-178b-oscar-repetitions/8b7178b25b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 3, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
8b7178b25b/evaluation/generation/agg.8b7178b25b_GEM-web_nlg_en_PALM_prompt_4.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "bleu": 1.020225734756704, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.06946466420275214}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_precision": 0.21447559212644274, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.005787602630220149}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_recall": 0.3797811786576114, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.005078572769442694}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_fmeasure": 0.22615455778377724, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.004584303113870005}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_precision": 0.11802182161980528, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.003954053081043237}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_recall": 0.20495230642568182, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.003956396099130858}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_fmeasure": 0.12153309984630654, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0032009564132827184}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_precision": 0.18574729294363898, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.00493965653212434}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_recall": 0.34661430398431914, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.004643977843173891}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_fmeasure": 0.1985084531863174, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.003863020108912202}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_precision": 0.19295820334137398, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.005149923293184489}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_recall": 0.3532599821115898, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.004685486372918684}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_fmeasure": 0.20493355705865743, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.004011218572127487}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-178b-oscar-repetitions/8b7178b25b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 4, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
8b7178b25b/evaluation/generation/agg.8b7178b25b_GEM-web_nlg_en_PALM_prompt_5.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "bleu": 1.1738991703843653, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.05137420728965795}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_precision": 0.23842752486609714, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.00616558462817229}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_recall": 0.39104608539227964, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.005079097315439687}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_fmeasure": 0.2452749113827306, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.004866057995099286}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_precision": 0.13743673376990653, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.004448566773563913}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_recall": 0.21617363071605727, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.004065117072186819}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_fmeasure": 0.13673599319945717, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.003545382189555846}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_precision": 0.20669362004199143, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0053303444381744315}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_recall": 0.35345362943589836, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.004581784867877382}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_fmeasure": 0.2145149869812429, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.004135695136449003}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_precision": 0.21482050441032427, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.005549487778372521}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_recall": 0.3612051449037077, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.004657096205531439}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_fmeasure": 0.22169261840373009, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.004292938565416988}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-178b-oscar-repetitions/8b7178b25b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 5, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
8b7178b25b/evaluation/generation/agg.8b7178b25b_GEM-wiki_lingua_en_tldr_en_0.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge1_precision": 0.16222110345712215, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.002918181626000938}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge1_recall": 0.23556142979563985, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.0035092798940514463}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge1_fmeasure": 0.17281704832161807, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0025639705499622615}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge2_precision": 0.04035916262517482, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0011089852877097363}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge2_recall": 0.06187933259063034, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0015927286355937283}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge2_fmeasure": 0.04445750772336212, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0010694173040695087}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeL_precision": 0.12115800294799915, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0023302786580353405}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeL_recall": 0.1793437869920672, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0027904364481447434}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeL_fmeasure": 0.12828595447707558, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0018630698897748783}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeLsum_precision": 0.15193645088089489, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.002794596188541928}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeLsum_recall": 0.22017606445792967, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.003307741344782461}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeLsum_fmeasure": 0.16125234602130137, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0024054029356366125}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "bleu": 3.2204812581094187, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.0968937530189579}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-178b-oscar-repetitions/8b7178b25b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 0, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
8b7178b25b/evaluation/generation/agg.8b7178b25b_GEM-wiki_lingua_en_tldr_en_1.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge1_precision": 0.24835405674131716, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.003595946507957674}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge1_recall": 0.22065222520601965, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.0030326234032250735}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge1_fmeasure": 0.20057722026752264, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.00237727127672953}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge2_precision": 0.07072572329707479, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.002023483136430399}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge2_recall": 0.05888749376061464, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0015271270172799948}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge2_fmeasure": 0.053780768787129375, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0012652221510456923}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeL_precision": 0.18962847615836217, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0029056148560385174}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeL_recall": 0.16669593752772216, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0023452388157941375}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeL_fmeasure": 0.15099195793433165, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0017939149386485946}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeLsum_precision": 0.23119707647225618, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0034029730598757074}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeLsum_recall": 0.20514467867088854, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0028358663517956315}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeLsum_fmeasure": 0.18619742012806825, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0022080861119325576}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "bleu": 3.030764799858383, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.10180137949258324}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-178b-oscar-repetitions/8b7178b25b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 1, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
8b7178b25b/evaluation/generation/agg.8b7178b25b_e2e_nlg_cleaned_generate_text_restaurant_0.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "bleu": 1.8080075016885704, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.061027545228237855}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_precision": 0.1356910382997071, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0015410643240858764}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_recall": 0.2778453886224831, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.0023539268248121705}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_fmeasure": 0.17861979049522314, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0018002125016461491}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_precision": 0.03490809623131593, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0008357898041576343}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_recall": 0.07284634942140401, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0015701168954429102}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_fmeasure": 0.046215425350075, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0010566397123776003}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_precision": 0.12227403244327856, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0011855454993101654}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_recall": 0.2551033251187225, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0019031145709281366}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_fmeasure": 0.16201597249905292, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0013971090679042123}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_precision": 0.113242028542405, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0013998996791185847}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_recall": 0.23203443734017606, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0022390418934348437}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_fmeasure": 0.14908466648922475, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0016626826909044133}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-178b-oscar-repetitions/8b7178b25b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 0, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
8b7178b25b/evaluation/generation/agg.8b7178b25b_e2e_nlg_cleaned_generate_text_restaurant_1.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "bleu": 12.173849341913149, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.0669092468478733}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_precision": 0.5970385739901486, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.003272991717133695}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_recall": 0.44205108840831364, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.002990943407358534}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_fmeasure": 0.48129644782721304, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0023219173855042303}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_precision": 0.2911262146867607, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.002892523328423528}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_recall": 0.2107609477318019, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0022166981158979714}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_fmeasure": 0.23032000484043905, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0021147211593944798}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_precision": 0.4377488624210833, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.003110832463080634}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_recall": 0.3198170788492075, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.002444190246186975}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_fmeasure": 0.34966965256911114, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.002108342891501849}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_precision": 0.48957738460024036, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.00327157474691632}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_recall": 0.36068779636155734, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0027524175233159713}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_fmeasure": 0.39331173897680705, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0023364505709058668}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-178b-oscar-repetitions/8b7178b25b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 1, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
8b7178b25b/evaluation/generation/agg.8b7178b25b_e2e_nlg_cleaned_generate_text_restaurant_2.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "bleu": 14.360624153571306, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.15724700369597677}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_precision": 0.6032331597687249, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.003142877448057622}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_recall": 0.4697575589134947, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.0029526957130554953}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_fmeasure": 0.5041317140273615, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0022753134233410278}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_precision": 0.30851618494266825, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.002855313490834544}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_recall": 0.23616858770973606, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.002325964607821345}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_fmeasure": 0.25374280478792693, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.002169411661246531}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_precision": 0.4477614821909179, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.003011118677636196}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_recall": 0.3459816794847227, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.002532543665969986}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_fmeasure": 0.3721296496966484, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.002164018647000424}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_precision": 0.5054563233222107, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0032185989379280733}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_recall": 0.39233324008569126, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0027964602331100393}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_fmeasure": 0.42160904040581204, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.002384317338752149}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-178b-oscar-repetitions/8b7178b25b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 2, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
8b7178b25b/evaluation/generation/agg.8b7178b25b_e2e_nlg_cleaned_generate_text_restaurant_3.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "bleu": 15.173778916293744, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.24020125390484678}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_precision": 0.6038782195503243, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.003130218028564903}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_recall": 0.4797961783746489, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.0029264432136497623}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_fmeasure": 0.5122282123885756, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0022794016747342454}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_precision": 0.31128306325561933, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0028044649859898306}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_recall": 0.2447494516430458, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.002368198668181156}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_fmeasure": 0.2611392423531194, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0021928684064362373}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_precision": 0.44868202075612884, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0029681578589764264}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_recall": 0.35482043982343436, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.002532913929369527}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_fmeasure": 0.37928627551530325, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0021871071072142663}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_precision": 0.5087702457406414, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0031818356512290486}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_recall": 0.4036850753818513, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0028061971662930287}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_fmeasure": 0.43123333798993546, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.002401597688343299}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-178b-oscar-repetitions/8b7178b25b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 3, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
8b7178b25b/evaluation/generation/agg.8b7178b25b_e2e_nlg_cleaned_generate_text_restaurant_4.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "bleu": 15.78836334652692, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.16277087917874616}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_precision": 0.6052306848983445, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0031205758451821283}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_recall": 0.49015291142822803, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.002870806275113502}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_fmeasure": 0.5201963806927633, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0022664890545995124}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_precision": 0.31194428367362853, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0027609843407215874}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_recall": 0.2500276639929066, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0023425058959290804}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_fmeasure": 0.2653610425045864, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0021838284720614534}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_precision": 0.4475978408946653, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.002901824428209634}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_recall": 0.36147111146407906, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.002523200720958866}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_fmeasure": 0.3838642484464721, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.002185515405072229}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_precision": 0.5110579537103325, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0031404148777386892}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_recall": 0.4135967411759738, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0027946622087117543}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_fmeasure": 0.43919378367441203, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.002408659068024605}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-178b-oscar-repetitions/8b7178b25b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 4, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
8b7178b25b/evaluation/generation/agg.8b7178b25b_e2e_nlg_cleaned_generate_text_restaurant_5.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "bleu": 15.879323420491742, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.1522927233333457}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_precision": 0.6064323245894362, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.00315510278665659}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_recall": 0.49013366730559393, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.0028136604439425025}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_fmeasure": 0.5216373530710218, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.002262224044659468}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_precision": 0.3150817079641561, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.002829192112850875}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_recall": 0.25132514912770915, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.002318826430015561}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_fmeasure": 0.26786622625063644, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.002208434520877025}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_precision": 0.45023806138186195, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.002949168521598567}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_recall": 0.36355539000425124, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.002526510160020316}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_fmeasure": 0.38681699896646954, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.002220989687079745}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_precision": 0.5137337228447252, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0031936836223124105}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_recall": 0.41496788459604567, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0027605438893900454}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_fmeasure": 0.4417889417099761, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0024158193931717187}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-178b-oscar-repetitions/8b7178b25b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 5, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
8b7178b25b/evaluation/generation/agg.8b7178b25b_gem_xsum_article_DOC_summary_0.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge1_precision": 0.1512189693389312, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.002590198483449934}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge1_recall": 0.32951007687075756, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.004923756202298708}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge1_fmeasure": 0.20062931818668506, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.002892087092668822}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge2_precision": 0.03240083882273609, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0011887319293568278}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge2_recall": 0.07461053739480651, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0027791525130900266}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge2_fmeasure": 0.044133865209903714, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0015693045278532822}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeL_precision": 0.11056422701824653, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0021853162208514175}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeL_recall": 0.23921769394978765, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.003783594428094317}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeL_fmeasure": 0.14533977808404885, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0021630231020242576}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeLsum_precision": 0.12055829236568064, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.002297890666943901}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeLsum_recall": 0.2623026232832005, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.004182995633448934}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeLsum_fmeasure": 0.15912733837926105, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0023937408312475765}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "bleu": 1.9472662234201847, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.0954010664780363}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-178b-oscar-repetitions/8b7178b25b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 0, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
8b7178b25b/evaluation/generation/agg.8b7178b25b_gem_xsum_article_DOC_summary_1.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge1_precision": 0.2431489069099882, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.004319149380207122}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge1_recall": 0.27274551008869324, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.004181125297952178}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge1_fmeasure": 0.24058051563117627, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.003619950901783304}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge2_precision": 0.06156338993755893, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0027090151794028584}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge2_recall": 0.06564279411701872, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0026141410795920464}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge2_fmeasure": 0.05891708042714147, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.002369248568269019}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeL_precision": 0.18703509762652787, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0036036431129194833}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeL_recall": 0.20956010556672522, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.00345405751329193}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeL_fmeasure": 0.1845786738464429, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0030093215424524295}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeLsum_precision": 0.18954846036997042, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0035941447605698394}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeLsum_recall": 0.21418956311713871, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0035468160066617596}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeLsum_fmeasure": 0.18768186260751757, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.003017598467168456}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "bleu": 2.857997728240847, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.15132505328438867}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-178b-oscar-repetitions/8b7178b25b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 1, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
8b7178b25b/evaluation/generation/agg.8b7178b25b_gem_xsum_article_DOC_summary_2.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": [{"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge1_precision": 0.25234682823435783, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.004406932928762655}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge1_recall": 0.26739840698638306, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.0039999072862688684}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge1_fmeasure": 0.24657160673903905, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0037739176215048444}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge2_precision": 0.06567480327233229, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0027842377535723913}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge2_recall": 0.06599412859644187, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0026775951767211374}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge2_fmeasure": 0.06271701269177109, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0025663699767628305}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeL_precision": 0.1921361411782326, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0036263536814562453}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeL_recall": 0.20386135964058816, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0033147209011893724}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeL_fmeasure": 0.1876781101224112, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0031437463539169125}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeLsum_precision": 0.19374913452852363, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0036251531161871544}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeLsum_recall": 0.20676693183261305, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0034014354284824795}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeLsum_fmeasure": 0.1896272533115015, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0031550558124475133}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "bleu": 3.19195992073562, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.2067955639958893}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-178b-oscar-repetitions/8b7178b25b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 2, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
|
8b7178b25b/evaluation/generation/examples.8b7178b25b_GEM-web_nlg_en_PALM_prompt_0.jsonl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bc141882d70577d64a629af820e65de857d7cebc8a97999f9b0a04b6756b2c15
|
3 |
+
size 3823764
|
8b7178b25b/evaluation/generation/examples.8b7178b25b_GEM-web_nlg_en_PALM_prompt_1.jsonl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8bd8fb2ee288e99c763f301203e68fc5701dd70af25cdf486443fddeb1dc0bdf
|
3 |
+
size 4753296
|
8b7178b25b/evaluation/generation/examples.8b7178b25b_GEM-web_nlg_en_PALM_prompt_2.jsonl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0629d66c49c4bdfb6040b30e989a4c82468f106e021681c1b1608074b60514ff
|
3 |
+
size 5581198
|
8b7178b25b/evaluation/generation/examples.8b7178b25b_GEM-web_nlg_en_PALM_prompt_3.jsonl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1a5f06e44ce5a0d5292167f69b5ea9341d6bdd521d6b821fc907490772fdf8c4
|
3 |
+
size 6444573
|
8b7178b25b/evaluation/generation/examples.8b7178b25b_GEM-web_nlg_en_PALM_prompt_4.jsonl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:09fc8b0a1ad30d4620c312955b4b813cfdbcc6d6b3bca0f131467f71e81d6b4a
|
3 |
+
size 7305310
|
8b7178b25b/evaluation/generation/examples.8b7178b25b_GEM-web_nlg_en_PALM_prompt_5.jsonl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9f5c1a033d961a41e6f73fdefb253ce551eb72a132d1d91b49e79d29f5070898
|
3 |
+
size 8160763
|
8b7178b25b/evaluation/generation/examples.8b7178b25b_GEM-wiki_lingua_en_tldr_en_0.jsonl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6a26cd8275bb29178938176e55b6b28ef9d4eb3e3e322738cf3c5561c676499d
|
3 |
+
size 7473474
|
8b7178b25b/evaluation/generation/examples.8b7178b25b_GEM-wiki_lingua_en_tldr_en_1.jsonl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9fabcd86f6e3d6ae965d311be5686c99fdcaf0349f8ce37ac6148d8cc3738ba0
|
3 |
+
size 12934697
|
8b7178b25b/evaluation/generation/examples.8b7178b25b_GEM-wiki_lingua_en_tldr_en_2.jsonl
ADDED
File without changes
|
8b7178b25b/evaluation/generation/examples.8b7178b25b_GEM-wiki_lingua_en_tldr_en_3.jsonl
ADDED
File without changes
|
8b7178b25b/evaluation/generation/examples.8b7178b25b_GEM-wiki_lingua_en_tldr_en_4.jsonl
ADDED
File without changes
|
8b7178b25b/evaluation/generation/examples.8b7178b25b_GEM-wiki_lingua_en_tldr_en_5.jsonl
ADDED
File without changes
|
8b7178b25b/evaluation/generation/examples.8b7178b25b_e2e_nlg_cleaned_generate_text_restaurant_0.jsonl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:042e377741565300f5f3b1fee7bab0d6a795e88898ff638cac59c615e75ee454
|
3 |
+
size 4370955
|
8b7178b25b/evaluation/generation/examples.8b7178b25b_e2e_nlg_cleaned_generate_text_restaurant_1.jsonl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d80417f4d0f7e96e6b204eb5d7a0337652207eb2f0afaae00d5ab82d977d8e8c
|
3 |
+
size 4993617
|
8b7178b25b/evaluation/generation/examples.8b7178b25b_e2e_nlg_cleaned_generate_text_restaurant_2.jsonl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:015082db438de64e42e87ecb9a43f2783cf6177c1a6d987c859cd64f82220217
|
3 |
+
size 6087012
|
8b7178b25b/evaluation/generation/examples.8b7178b25b_e2e_nlg_cleaned_generate_text_restaurant_3.jsonl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:71006d431ef2ee5a581ef6bd6e86c446dd870df445222a426f2e80bdceb16aa5
|
3 |
+
size 7174145
|
8b7178b25b/evaluation/generation/examples.8b7178b25b_e2e_nlg_cleaned_generate_text_restaurant_4.jsonl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d91dabcfb680221adfd38c57a0a63f5bbd15c1d4c61412917a89b7034822677b
|
3 |
+
size 8257991
|
8b7178b25b/evaluation/generation/examples.8b7178b25b_e2e_nlg_cleaned_generate_text_restaurant_5.jsonl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3eb99e8bcacf1cceee3459f23630184e1623d5e0c2835493389e471acb9b7e32
|
3 |
+
size 9344420
|
8b7178b25b/evaluation/generation/examples.8b7178b25b_gem_xsum_article_DOC_summary_0.jsonl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:67cbd74998310a74d0017f07379277de7bacff9099822469958406a11163c290
|
3 |
+
size 2794946
|
8b7178b25b/evaluation/generation/examples.8b7178b25b_gem_xsum_article_DOC_summary_1.jsonl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:19d908a094bf69be6be55681f5f8c23eb19561d5248275daf0a27cd9e62090d8
|
3 |
+
size 4940129
|
8b7178b25b/evaluation/generation/examples.8b7178b25b_gem_xsum_article_DOC_summary_2.jsonl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cf2fa19fe543554a0a1ca6b84862b145bc35b02bf6c9ef7bf719d9b69eb89a78
|
3 |
+
size 7201820
|
8b7178b25b/evaluation/generation/examples.8b7178b25b_gem_xsum_article_DOC_summary_3.jsonl
ADDED
File without changes
|
8b7178b25b/evaluation/generation/examples.8b7178b25b_gem_xsum_article_DOC_summary_4.jsonl
ADDED
File without changes
|
8b7178b25b/evaluation/generation/examples.8b7178b25b_gem_xsum_article_DOC_summary_5.jsonl
ADDED
File without changes
|
8b7178b25b/evaluation/generation/merged.csv
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
dataset,fewshots,prompt,metric,value
|
2 |
+
e2e_nlg_cleaned,0,generate_text_restaurant,rouge2_fmeasure,0.046215425350075
|
3 |
+
e2e_nlg_cleaned,0,median,rouge2_fmeasure,0.046215425350075
|
4 |
+
e2e_nlg_cleaned,1,generate_text_restaurant,rouge2_fmeasure,0.23032000484043905
|
5 |
+
e2e_nlg_cleaned,1,median,rouge2_fmeasure,0.23032000484043905
|
6 |
+
e2e_nlg_cleaned,2,generate_text_restaurant,rouge2_fmeasure,0.25374280478792693
|
7 |
+
e2e_nlg_cleaned,2,median,rouge2_fmeasure,0.25374280478792693
|
8 |
+
e2e_nlg_cleaned,3,generate_text_restaurant,rouge2_fmeasure,0.2611392423531194
|
9 |
+
e2e_nlg_cleaned,3,median,rouge2_fmeasure,0.2611392423531194
|
10 |
+
e2e_nlg_cleaned,4,generate_text_restaurant,rouge2_fmeasure,0.2653610425045864
|
11 |
+
e2e_nlg_cleaned,4,median,rouge2_fmeasure,0.2653610425045864
|
12 |
+
e2e_nlg_cleaned,5,generate_text_restaurant,rouge2_fmeasure,0.26786622625063644
|
13 |
+
e2e_nlg_cleaned,5,median,rouge2_fmeasure,0.26786622625063644
|
14 |
+
e2e_nlg_cleaned,5,average,multiple,0.2207741243477972
|
15 |
+
gem_xsum,0,article_DOC_summary,rouge2_fmeasure,0.044133865209903714
|
16 |
+
gem_xsum,0,median,rouge2_fmeasure,0.044133865209903714
|
17 |
+
gem_xsum,1,article_DOC_summary,rouge2_fmeasure,0.05891708042714147
|
18 |
+
gem_xsum,1,median,rouge2_fmeasure,0.05891708042714147
|
19 |
+
gem_xsum,2,article_DOC_summary,rouge2_fmeasure,0.06271701269177109
|
20 |
+
gem_xsum,2,median,rouge2_fmeasure,0.06271701269177109
|
21 |
+
gem_xsum,2,average,multiple,0.05525598610960542
|
22 |
+
web_nlg_en,0,PALM_prompt,rouge2_fmeasure,0.04353421604632926
|
23 |
+
web_nlg_en,0,median,rouge2_fmeasure,0.04353421604632926
|
24 |
+
web_nlg_en,1,PALM_prompt,rouge2_fmeasure,0.07820906828691397
|
25 |
+
web_nlg_en,1,median,rouge2_fmeasure,0.07820906828691397
|
26 |
+
web_nlg_en,2,PALM_prompt,rouge2_fmeasure,0.1017490401630499
|
27 |
+
web_nlg_en,2,median,rouge2_fmeasure,0.1017490401630499
|
28 |
+
web_nlg_en,3,PALM_prompt,rouge2_fmeasure,0.11312048852329888
|
29 |
+
web_nlg_en,3,median,rouge2_fmeasure,0.11312048852329888
|
30 |
+
web_nlg_en,4,PALM_prompt,rouge2_fmeasure,0.12153309984630654
|
31 |
+
web_nlg_en,4,median,rouge2_fmeasure,0.12153309984630654
|
32 |
+
web_nlg_en,5,PALM_prompt,rouge2_fmeasure,0.13673599319945717
|
33 |
+
web_nlg_en,5,median,rouge2_fmeasure,0.13673599319945717
|
34 |
+
web_nlg_en,5,average,multiple,0.09914698434422596
|
35 |
+
wiki_lingua_en,0,tldr_en,rouge2_fmeasure,0.04445750772336212
|
36 |
+
wiki_lingua_en,0,median,rouge2_fmeasure,0.04445750772336212
|
37 |
+
wiki_lingua_en,1,tldr_en,rouge2_fmeasure,0.053780768787129375
|
38 |
+
wiki_lingua_en,1,median,rouge2_fmeasure,0.053780768787129375
|
39 |
+
wiki_lingua_en,1,average,multiple,0.04911913825524575
|
8b7178b25b/evaluation/generation/merged.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"GEM/web_nlg_en": {"0": {"PALM_prompt": {"bleu": 0.33618386090404295, "bleu_stderr": 0.043286547374004225, "rouge1_fmeasure": 0.09550360928926843, "rouge1_fmeasure_stderr": 0.0021611192824620468, "rouge1_precision": 0.07608115633976532, "rouge1_precision_stderr": 0.0028424335866037475, "rouge1_recall": 0.243734587530279, "rouge1_recall_stderr": 0.005032751672173048, "rouge2_fmeasure": 0.04353421604632926, "rouge2_fmeasure_stderr": 0.0013022741040944032, "rouge2_precision": 0.03391274645846755, "rouge2_precision_stderr": 0.0017782441786429572, "rouge2_recall": 0.11477361563470867, "rouge2_recall_stderr": 0.0030177112931945443, "rougeL_fmeasure": 0.0908905716888711, "rougeL_fmeasure_stderr": 0.0019748576875776485, "rougeL_precision": 0.07249954185930807, "rougeL_precision_stderr": 0.002716866763111571, "rougeL_recall": 0.23447583587320983, "rougeL_recall_stderr": 0.004820896551192642, "rougeLsum_fmeasure": 0.09063319866429098, "rougeLsum_fmeasure_stderr": 0.002018782468480028, "rougeLsum_precision": 0.07260565563718514, "rougeLsum_precision_stderr": 0.0027622865524293628, "rougeLsum_recall": 0.2312007323793673, "rougeLsum_recall_stderr": 0.004666750865618609}}, "1": {"PALM_prompt": {"bleu": 0.5152510207869508, "bleu_stderr": 0.039697768768641464, "rouge1_fmeasure": 0.15419793855600986, "rouge1_fmeasure_stderr": 0.0037752055082234935, "rouge1_precision": 0.1335251141437586, "rouge1_precision_stderr": 0.004421796872864802, "rouge1_recall": 0.3040669240102272, "rouge1_recall_stderr": 0.0049926465687368735, "rouge2_fmeasure": 0.07820906828691397, "rouge2_fmeasure_stderr": 0.0026222161094111586, "rouge2_precision": 0.06857339375782437, "rouge2_precision_stderr": 0.0030273264083127568, "rouge2_recall": 0.1555986112064758, "rouge2_recall_stderr": 0.0036341014671041087, "rougeL_fmeasure": 0.13965714245032726, "rougeL_fmeasure_stderr": 0.0032487392690607572, "rougeL_precision": 0.1195649771956543, "rougeL_precision_stderr": 0.0038518942294089972, "rougeL_recall": 0.2838951533263151, "rougeL_recall_stderr": 0.004599064364517073, "rougeLsum_fmeasure": 0.14150307262693815, "rougeLsum_fmeasure_stderr": 0.0033007395324502467, "rougeLsum_precision": 0.12140487798820795, "rougeLsum_precision_stderr": 0.003915984273012587, "rougeLsum_recall": 0.2857833042522088, "rougeLsum_recall_stderr": 0.004601461544101827}}, "2": {"PALM_prompt": {"bleu": 0.6450721424031474, "bleu_stderr": 0.035938592978876936, "rouge1_fmeasure": 0.19228537050298922, "rouge1_fmeasure_stderr": 0.004356183491682661, "rouge1_precision": 0.17715496451419446, "rouge1_precision_stderr": 0.005377686826508908, "rouge1_recall": 0.3442204927205235, "rouge1_recall_stderr": 0.00499209962075588, "rouge2_fmeasure": 0.1017490401630499, "rouge2_fmeasure_stderr": 0.003080557280075834, "rouge2_precision": 0.09659406582034752, "rouge2_precision_stderr": 0.0036720254666308344, "rouge2_recall": 0.1816245156374427, "rouge2_recall_stderr": 0.0038421174433974025, "rougeL_fmeasure": 0.17158392384169643, "rougeL_fmeasure_stderr": 0.0037128302671958994, "rougeL_precision": 0.15519367504713033, "rougeL_precision_stderr": 0.004580706449804959, "rougeL_recall": 0.31893881029765586, "rougeL_recall_stderr": 0.004597766706728441, "rougeLsum_fmeasure": 0.17498254398589475, "rougeLsum_fmeasure_stderr": 0.0037985612156152086, "rougeLsum_precision": 0.1592800915810083, "rougeLsum_precision_stderr": 0.0047149524911017215, "rougeLsum_recall": 0.3221825821541532, "rougeLsum_recall_stderr": 0.0046252310161258746}}, "3": {"PALM_prompt": {"bleu": 0.8785043636862591, "bleu_stderr": 0.02652000083973547, "rouge1_fmeasure": 0.21217682060449367, "rouge1_fmeasure_stderr": 0.004581243352642801, "rouge1_precision": 0.2002191357399255, "rouge1_precision_stderr": 0.005700191155087746, "rouge1_recall": 0.3622650735119951, "rouge1_recall_stderr": 0.005105318033672305, "rouge2_fmeasure": 0.11312048852329888, "rouge2_fmeasure_stderr": 0.003186877123824252, "rouge2_precision": 0.10955905558045385, "rouge2_precision_stderr": 0.0038849982073218873, "rouge2_recall": 0.19262377036723086, "rouge2_recall_stderr": 0.003902442560309681, "rougeL_fmeasure": 0.1874319081280966, "rougeL_fmeasure_stderr": 0.0038899168243038715, "rougeL_precision": 0.1744946205047383, "rougeL_precision_stderr": 0.004899868234689971, "rougeL_recall": 0.33190561350734876, "rougeL_recall_stderr": 0.004628476785750535, "rougeLsum_fmeasure": 0.19207381785134825, "rougeLsum_fmeasure_stderr": 0.004003703743860644, "rougeLsum_precision": 0.17972186968155374, "rougeLsum_precision_stderr": 0.005058207025529124, "rougeLsum_recall": 0.33723235220496645, "rougeLsum_recall_stderr": 0.0046889691038068775}}, "4": {"PALM_prompt": {"bleu": 1.020225734756704, "bleu_stderr": 0.06946466420275214, "rouge1_fmeasure": 0.22615455778377724, "rouge1_fmeasure_stderr": 0.004584303113870005, "rouge1_precision": 0.21447559212644274, "rouge1_precision_stderr": 0.005787602630220149, "rouge1_recall": 0.3797811786576114, "rouge1_recall_stderr": 0.005078572769442694, "rouge2_fmeasure": 0.12153309984630654, "rouge2_fmeasure_stderr": 0.0032009564132827184, "rouge2_precision": 0.11802182161980528, "rouge2_precision_stderr": 0.003954053081043237, "rouge2_recall": 0.20495230642568182, "rouge2_recall_stderr": 0.003956396099130858, "rougeL_fmeasure": 0.1985084531863174, "rougeL_fmeasure_stderr": 0.003863020108912202, "rougeL_precision": 0.18574729294363898, "rougeL_precision_stderr": 0.00493965653212434, "rougeL_recall": 0.34661430398431914, "rougeL_recall_stderr": 0.004643977843173891, "rougeLsum_fmeasure": 0.20493355705865743, "rougeLsum_fmeasure_stderr": 0.004011218572127487, "rougeLsum_precision": 0.19295820334137398, "rougeLsum_precision_stderr": 0.005149923293184489, "rougeLsum_recall": 0.3532599821115898, "rougeLsum_recall_stderr": 0.004685486372918684}}, "5": {"PALM_prompt": {"bleu": 1.1738991703843653, "bleu_stderr": 0.05137420728965795, "rouge1_fmeasure": 0.2452749113827306, "rouge1_fmeasure_stderr": 0.004866057995099286, "rouge1_precision": 0.23842752486609714, "rouge1_precision_stderr": 0.00616558462817229, "rouge1_recall": 0.39104608539227964, "rouge1_recall_stderr": 0.005079097315439687, "rouge2_fmeasure": 0.13673599319945717, "rouge2_fmeasure_stderr": 0.003545382189555846, "rouge2_precision": 0.13743673376990653, "rouge2_precision_stderr": 0.004448566773563913, "rouge2_recall": 0.21617363071605727, "rouge2_recall_stderr": 0.004065117072186819, "rougeL_fmeasure": 0.2145149869812429, "rougeL_fmeasure_stderr": 0.004135695136449003, "rougeL_precision": 0.20669362004199143, "rougeL_precision_stderr": 0.0053303444381744315, "rougeL_recall": 0.35345362943589836, "rougeL_recall_stderr": 0.004581784867877382, "rougeLsum_fmeasure": 0.22169261840373009, "rougeLsum_fmeasure_stderr": 0.004292938565416988, "rougeLsum_precision": 0.21482050441032427, "rougeLsum_precision_stderr": 0.005549487778372521, "rougeLsum_recall": 0.3612051449037077, "rougeLsum_recall_stderr": 0.004657096205531439}}}, "GEM/wiki_lingua_en": {"0": {"tldr_en": {"bleu": 3.2204812581094187, "bleu_stderr": 0.0968937530189579, "rouge1_fmeasure": 0.17281704832161807, "rouge1_fmeasure_stderr": 0.0025639705499622615, "rouge1_precision": 0.16222110345712215, "rouge1_precision_stderr": 0.002918181626000938, "rouge1_recall": 0.23556142979563985, "rouge1_recall_stderr": 0.0035092798940514463, "rouge2_fmeasure": 0.04445750772336212, "rouge2_fmeasure_stderr": 0.0010694173040695087, "rouge2_precision": 0.04035916262517482, "rouge2_precision_stderr": 0.0011089852877097363, "rouge2_recall": 0.06187933259063034, "rouge2_recall_stderr": 0.0015927286355937283, "rougeL_fmeasure": 0.12828595447707558, "rougeL_fmeasure_stderr": 0.0018630698897748783, "rougeL_precision": 0.12115800294799915, "rougeL_precision_stderr": 0.0023302786580353405, "rougeL_recall": 0.1793437869920672, "rougeL_recall_stderr": 0.0027904364481447434, "rougeLsum_fmeasure": 0.16125234602130137, "rougeLsum_fmeasure_stderr": 0.0024054029356366125, "rougeLsum_precision": 0.15193645088089489, "rougeLsum_precision_stderr": 0.002794596188541928, "rougeLsum_recall": 0.22017606445792967, "rougeLsum_recall_stderr": 0.003307741344782461}}, "1": {"tldr_en": {"bleu": 3.030764799858383, "bleu_stderr": 0.10180137949258324, "rouge1_fmeasure": 0.20057722026752264, "rouge1_fmeasure_stderr": 0.00237727127672953, "rouge1_precision": 0.24835405674131716, "rouge1_precision_stderr": 0.003595946507957674, "rouge1_recall": 0.22065222520601965, "rouge1_recall_stderr": 0.0030326234032250735, "rouge2_fmeasure": 0.053780768787129375, "rouge2_fmeasure_stderr": 0.0012652221510456923, "rouge2_precision": 0.07072572329707479, "rouge2_precision_stderr": 0.002023483136430399, "rouge2_recall": 0.05888749376061464, "rouge2_recall_stderr": 0.0015271270172799948, "rougeL_fmeasure": 0.15099195793433165, "rougeL_fmeasure_stderr": 0.0017939149386485946, "rougeL_precision": 0.18962847615836217, "rougeL_precision_stderr": 0.0029056148560385174, "rougeL_recall": 0.16669593752772216, "rougeL_recall_stderr": 0.0023452388157941375, "rougeLsum_fmeasure": 0.18619742012806825, "rougeLsum_fmeasure_stderr": 0.0022080861119325576, "rougeLsum_precision": 0.23119707647225618, "rougeLsum_precision_stderr": 0.0034029730598757074, "rougeLsum_recall": 0.20514467867088854, "rougeLsum_recall_stderr": 0.0028358663517956315}}}, "e2e_nlg_cleaned": {"0": {"generate_text_restaurant": {"bleu": 1.8080075016885704, "bleu_stderr": 0.061027545228237855, "rouge1_fmeasure": 0.17861979049522314, "rouge1_fmeasure_stderr": 0.0018002125016461491, "rouge1_precision": 0.1356910382997071, "rouge1_precision_stderr": 0.0015410643240858764, "rouge1_recall": 0.2778453886224831, "rouge1_recall_stderr": 0.0023539268248121705, "rouge2_fmeasure": 0.046215425350075, "rouge2_fmeasure_stderr": 0.0010566397123776003, "rouge2_precision": 0.03490809623131593, "rouge2_precision_stderr": 0.0008357898041576343, "rouge2_recall": 0.07284634942140401, "rouge2_recall_stderr": 0.0015701168954429102, "rougeL_fmeasure": 0.16201597249905292, "rougeL_fmeasure_stderr": 0.0013971090679042123, "rougeL_precision": 0.12227403244327856, "rougeL_precision_stderr": 0.0011855454993101654, "rougeL_recall": 0.2551033251187225, "rougeL_recall_stderr": 0.0019031145709281366, "rougeLsum_fmeasure": 0.14908466648922475, "rougeLsum_fmeasure_stderr": 0.0016626826909044133, "rougeLsum_precision": 0.113242028542405, "rougeLsum_precision_stderr": 0.0013998996791185847, "rougeLsum_recall": 0.23203443734017606, "rougeLsum_recall_stderr": 0.0022390418934348437}}, "1": {"generate_text_restaurant": {"bleu": 12.173849341913149, "bleu_stderr": 0.0669092468478733, "rouge1_fmeasure": 0.48129644782721304, "rouge1_fmeasure_stderr": 0.0023219173855042303, "rouge1_precision": 0.5970385739901486, "rouge1_precision_stderr": 0.003272991717133695, "rouge1_recall": 0.44205108840831364, "rouge1_recall_stderr": 0.002990943407358534, "rouge2_fmeasure": 0.23032000484043905, "rouge2_fmeasure_stderr": 0.0021147211593944798, "rouge2_precision": 0.2911262146867607, "rouge2_precision_stderr": 0.002892523328423528, "rouge2_recall": 0.2107609477318019, "rouge2_recall_stderr": 0.0022166981158979714, "rougeL_fmeasure": 0.34966965256911114, "rougeL_fmeasure_stderr": 0.002108342891501849, "rougeL_precision": 0.4377488624210833, "rougeL_precision_stderr": 0.003110832463080634, "rougeL_recall": 0.3198170788492075, "rougeL_recall_stderr": 0.002444190246186975, "rougeLsum_fmeasure": 0.39331173897680705, "rougeLsum_fmeasure_stderr": 0.0023364505709058668, "rougeLsum_precision": 0.48957738460024036, "rougeLsum_precision_stderr": 0.00327157474691632, "rougeLsum_recall": 0.36068779636155734, "rougeLsum_recall_stderr": 0.0027524175233159713}}, "2": {"generate_text_restaurant": {"bleu": 14.360624153571306, "bleu_stderr": 0.15724700369597677, "rouge1_fmeasure": 0.5041317140273615, "rouge1_fmeasure_stderr": 0.0022753134233410278, "rouge1_precision": 0.6032331597687249, "rouge1_precision_stderr": 0.003142877448057622, "rouge1_recall": 0.4697575589134947, "rouge1_recall_stderr": 0.0029526957130554953, "rouge2_fmeasure": 0.25374280478792693, "rouge2_fmeasure_stderr": 0.002169411661246531, "rouge2_precision": 0.30851618494266825, "rouge2_precision_stderr": 0.002855313490834544, "rouge2_recall": 0.23616858770973606, "rouge2_recall_stderr": 0.002325964607821345, "rougeL_fmeasure": 0.3721296496966484, "rougeL_fmeasure_stderr": 0.002164018647000424, "rougeL_precision": 0.4477614821909179, "rougeL_precision_stderr": 0.003011118677636196, "rougeL_recall": 0.3459816794847227, "rougeL_recall_stderr": 0.002532543665969986, "rougeLsum_fmeasure": 0.42160904040581204, "rougeLsum_fmeasure_stderr": 0.002384317338752149, "rougeLsum_precision": 0.5054563233222107, "rougeLsum_precision_stderr": 0.0032185989379280733, "rougeLsum_recall": 0.39233324008569126, "rougeLsum_recall_stderr": 0.0027964602331100393}}, "3": {"generate_text_restaurant": {"bleu": 15.173778916293744, "bleu_stderr": 0.24020125390484678, "rouge1_fmeasure": 0.5122282123885756, "rouge1_fmeasure_stderr": 0.0022794016747342454, "rouge1_precision": 0.6038782195503243, "rouge1_precision_stderr": 0.003130218028564903, "rouge1_recall": 0.4797961783746489, "rouge1_recall_stderr": 0.0029264432136497623, "rouge2_fmeasure": 0.2611392423531194, "rouge2_fmeasure_stderr": 0.0021928684064362373, "rouge2_precision": 0.31128306325561933, "rouge2_precision_stderr": 0.0028044649859898306, "rouge2_recall": 0.2447494516430458, "rouge2_recall_stderr": 0.002368198668181156, "rougeL_fmeasure": 0.37928627551530325, "rougeL_fmeasure_stderr": 0.0021871071072142663, "rougeL_precision": 0.44868202075612884, "rougeL_precision_stderr": 0.0029681578589764264, "rougeL_recall": 0.35482043982343436, "rougeL_recall_stderr": 0.002532913929369527, "rougeLsum_fmeasure": 0.43123333798993546, "rougeLsum_fmeasure_stderr": 0.002401597688343299, "rougeLsum_precision": 0.5087702457406414, "rougeLsum_precision_stderr": 0.0031818356512290486, "rougeLsum_recall": 0.4036850753818513, "rougeLsum_recall_stderr": 0.0028061971662930287}}, "4": {"generate_text_restaurant": {"bleu": 15.78836334652692, "bleu_stderr": 0.16277087917874616, "rouge1_fmeasure": 0.5201963806927633, "rouge1_fmeasure_stderr": 0.0022664890545995124, "rouge1_precision": 0.6052306848983445, "rouge1_precision_stderr": 0.0031205758451821283, "rouge1_recall": 0.49015291142822803, "rouge1_recall_stderr": 0.002870806275113502, "rouge2_fmeasure": 0.2653610425045864, "rouge2_fmeasure_stderr": 0.0021838284720614534, "rouge2_precision": 0.31194428367362853, "rouge2_precision_stderr": 0.0027609843407215874, "rouge2_recall": 0.2500276639929066, "rouge2_recall_stderr": 0.0023425058959290804, "rougeL_fmeasure": 0.3838642484464721, "rougeL_fmeasure_stderr": 0.002185515405072229, "rougeL_precision": 0.4475978408946653, "rougeL_precision_stderr": 0.002901824428209634, "rougeL_recall": 0.36147111146407906, "rougeL_recall_stderr": 0.002523200720958866, "rougeLsum_fmeasure": 0.43919378367441203, "rougeLsum_fmeasure_stderr": 0.002408659068024605, "rougeLsum_precision": 0.5110579537103325, "rougeLsum_precision_stderr": 0.0031404148777386892, "rougeLsum_recall": 0.4135967411759738, "rougeLsum_recall_stderr": 0.0027946622087117543}}, "5": {"generate_text_restaurant": {"bleu": 15.879323420491742, "bleu_stderr": 0.1522927233333457, "rouge1_fmeasure": 0.5216373530710218, "rouge1_fmeasure_stderr": 0.002262224044659468, "rouge1_precision": 0.6064323245894362, "rouge1_precision_stderr": 0.00315510278665659, "rouge1_recall": 0.49013366730559393, "rouge1_recall_stderr": 0.0028136604439425025, "rouge2_fmeasure": 0.26786622625063644, "rouge2_fmeasure_stderr": 0.002208434520877025, "rouge2_precision": 0.3150817079641561, "rouge2_precision_stderr": 0.002829192112850875, "rouge2_recall": 0.25132514912770915, "rouge2_recall_stderr": 0.002318826430015561, "rougeL_fmeasure": 0.38681699896646954, "rougeL_fmeasure_stderr": 0.002220989687079745, "rougeL_precision": 0.45023806138186195, "rougeL_precision_stderr": 0.002949168521598567, "rougeL_recall": 0.36355539000425124, "rougeL_recall_stderr": 0.002526510160020316, "rougeLsum_fmeasure": 0.4417889417099761, "rougeLsum_fmeasure_stderr": 0.0024158193931717187, "rougeLsum_precision": 0.5137337228447252, "rougeLsum_precision_stderr": 0.0031936836223124105, "rougeLsum_recall": 0.41496788459604567, "rougeLsum_recall_stderr": 0.0027605438893900454}}}, "gem_xsum": {"0": {"article_DOC_summary": {"bleu": 1.9472662234201847, "bleu_stderr": 0.0954010664780363, "rouge1_fmeasure": 0.20062931818668506, "rouge1_fmeasure_stderr": 0.002892087092668822, "rouge1_precision": 0.1512189693389312, "rouge1_precision_stderr": 0.002590198483449934, "rouge1_recall": 0.32951007687075756, "rouge1_recall_stderr": 0.004923756202298708, "rouge2_fmeasure": 0.044133865209903714, "rouge2_fmeasure_stderr": 0.0015693045278532822, "rouge2_precision": 0.03240083882273609, "rouge2_precision_stderr": 0.0011887319293568278, "rouge2_recall": 0.07461053739480651, "rouge2_recall_stderr": 0.0027791525130900266, "rougeL_fmeasure": 0.14533977808404885, "rougeL_fmeasure_stderr": 0.0021630231020242576, "rougeL_precision": 0.11056422701824653, "rougeL_precision_stderr": 0.0021853162208514175, "rougeL_recall": 0.23921769394978765, "rougeL_recall_stderr": 0.003783594428094317, "rougeLsum_fmeasure": 0.15912733837926105, "rougeLsum_fmeasure_stderr": 0.0023937408312475765, "rougeLsum_precision": 0.12055829236568064, "rougeLsum_precision_stderr": 0.002297890666943901, "rougeLsum_recall": 0.2623026232832005, "rougeLsum_recall_stderr": 0.004182995633448934}}, "1": {"article_DOC_summary": {"bleu": 2.857997728240847, "bleu_stderr": 0.15132505328438867, "rouge1_fmeasure": 0.24058051563117627, "rouge1_fmeasure_stderr": 0.003619950901783304, "rouge1_precision": 0.2431489069099882, "rouge1_precision_stderr": 0.004319149380207122, "rouge1_recall": 0.27274551008869324, "rouge1_recall_stderr": 0.004181125297952178, "rouge2_fmeasure": 0.05891708042714147, "rouge2_fmeasure_stderr": 0.002369248568269019, "rouge2_precision": 0.06156338993755893, "rouge2_precision_stderr": 0.0027090151794028584, "rouge2_recall": 0.06564279411701872, "rouge2_recall_stderr": 0.0026141410795920464, "rougeL_fmeasure": 0.1845786738464429, "rougeL_fmeasure_stderr": 0.0030093215424524295, "rougeL_precision": 0.18703509762652787, "rougeL_precision_stderr": 0.0036036431129194833, "rougeL_recall": 0.20956010556672522, "rougeL_recall_stderr": 0.00345405751329193, "rougeLsum_fmeasure": 0.18768186260751757, "rougeLsum_fmeasure_stderr": 0.003017598467168456, "rougeLsum_precision": 0.18954846036997042, "rougeLsum_precision_stderr": 0.0035941447605698394, "rougeLsum_recall": 0.21418956311713871, "rougeLsum_recall_stderr": 0.0035468160066617596}}, "2": {"article_DOC_summary": {"bleu": 3.19195992073562, "bleu_stderr": 0.2067955639958893, "rouge1_fmeasure": 0.24657160673903905, "rouge1_fmeasure_stderr": 0.0037739176215048444, "rouge1_precision": 0.25234682823435783, "rouge1_precision_stderr": 0.004406932928762655, "rouge1_recall": 0.26739840698638306, "rouge1_recall_stderr": 0.0039999072862688684, "rouge2_fmeasure": 0.06271701269177109, "rouge2_fmeasure_stderr": 0.0025663699767628305, "rouge2_precision": 0.06567480327233229, "rouge2_precision_stderr": 0.0027842377535723913, "rouge2_recall": 0.06599412859644187, "rouge2_recall_stderr": 0.0026775951767211374, "rougeL_fmeasure": 0.1876781101224112, "rougeL_fmeasure_stderr": 0.0031437463539169125, "rougeL_precision": 0.1921361411782326, "rougeL_precision_stderr": 0.0036263536814562453, "rougeL_recall": 0.20386135964058816, "rougeL_recall_stderr": 0.0033147209011893724, "rougeLsum_fmeasure": 0.1896272533115015, "rougeLsum_fmeasure_stderr": 0.0031550558124475133, "rougeLsum_precision": 0.19374913452852363, "rougeLsum_precision_stderr": 0.0036251531161871544, "rougeLsum_recall": 0.20676693183261305, "rougeLsum_recall_stderr": 0.0034014354284824795}}}}
|
8b7178b25b/evaluation/generation/slim.8b7178b25b_GEM-web_nlg_en_PALM_prompt_0.json
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": [
|
3 |
+
{
|
4 |
+
"task_name": "GEM/web_nlg_en",
|
5 |
+
"prompt_name": "PALM_prompt",
|
6 |
+
"bleu": 0.33618386090404295,
|
7 |
+
"dataset_path": "GEM/web_nlg",
|
8 |
+
"dataset_name": "en",
|
9 |
+
"subset": null,
|
10 |
+
"bleu_stderr": 0.043286547374004225
|
11 |
+
},
|
12 |
+
{
|
13 |
+
"task_name": "GEM/web_nlg_en",
|
14 |
+
"prompt_name": "PALM_prompt",
|
15 |
+
"rouge1_precision": 0.07608115633976532,
|
16 |
+
"dataset_path": "GEM/web_nlg",
|
17 |
+
"dataset_name": "en",
|
18 |
+
"subset": null,
|
19 |
+
"rouge1_precision_stderr": 0.0028424335866037475
|
20 |
+
},
|
21 |
+
{
|
22 |
+
"task_name": "GEM/web_nlg_en",
|
23 |
+
"prompt_name": "PALM_prompt",
|
24 |
+
"rouge1_recall": 0.243734587530279,
|
25 |
+
"dataset_path": "GEM/web_nlg",
|
26 |
+
"dataset_name": "en",
|
27 |
+
"subset": null,
|
28 |
+
"rouge1_recall_stderr": 0.005032751672173048
|
29 |
+
},
|
30 |
+
{
|
31 |
+
"task_name": "GEM/web_nlg_en",
|
32 |
+
"prompt_name": "PALM_prompt",
|
33 |
+
"rouge1_fmeasure": 0.09550360928926843,
|
34 |
+
"dataset_path": "GEM/web_nlg",
|
35 |
+
"dataset_name": "en",
|
36 |
+
"subset": null,
|
37 |
+
"rouge1_fmeasure_stderr": 0.0021611192824620468
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"task_name": "GEM/web_nlg_en",
|
41 |
+
"prompt_name": "PALM_prompt",
|
42 |
+
"rouge2_precision": 0.03391274645846755,
|
43 |
+
"dataset_path": "GEM/web_nlg",
|
44 |
+
"dataset_name": "en",
|
45 |
+
"subset": null,
|
46 |
+
"rouge2_precision_stderr": 0.0017782441786429572
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"task_name": "GEM/web_nlg_en",
|
50 |
+
"prompt_name": "PALM_prompt",
|
51 |
+
"rouge2_recall": 0.11477361563470867,
|
52 |
+
"dataset_path": "GEM/web_nlg",
|
53 |
+
"dataset_name": "en",
|
54 |
+
"subset": null,
|
55 |
+
"rouge2_recall_stderr": 0.0030177112931945443
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"task_name": "GEM/web_nlg_en",
|
59 |
+
"prompt_name": "PALM_prompt",
|
60 |
+
"rouge2_fmeasure": 0.04353421604632926,
|
61 |
+
"dataset_path": "GEM/web_nlg",
|
62 |
+
"dataset_name": "en",
|
63 |
+
"subset": null,
|
64 |
+
"rouge2_fmeasure_stderr": 0.0013022741040944032
|
65 |
+
},
|
66 |
+
{
|
67 |
+
"task_name": "GEM/web_nlg_en",
|
68 |
+
"prompt_name": "PALM_prompt",
|
69 |
+
"rougeL_precision": 0.07249954185930807,
|
70 |
+
"dataset_path": "GEM/web_nlg",
|
71 |
+
"dataset_name": "en",
|
72 |
+
"subset": null,
|
73 |
+
"rougeL_precision_stderr": 0.002716866763111571
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"task_name": "GEM/web_nlg_en",
|
77 |
+
"prompt_name": "PALM_prompt",
|
78 |
+
"rougeL_recall": 0.23447583587320983,
|
79 |
+
"dataset_path": "GEM/web_nlg",
|
80 |
+
"dataset_name": "en",
|
81 |
+
"subset": null,
|
82 |
+
"rougeL_recall_stderr": 0.004820896551192642
|
83 |
+
},
|
84 |
+
{
|
85 |
+
"task_name": "GEM/web_nlg_en",
|
86 |
+
"prompt_name": "PALM_prompt",
|
87 |
+
"rougeL_fmeasure": 0.0908905716888711,
|
88 |
+
"dataset_path": "GEM/web_nlg",
|
89 |
+
"dataset_name": "en",
|
90 |
+
"subset": null,
|
91 |
+
"rougeL_fmeasure_stderr": 0.0019748576875776485
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"task_name": "GEM/web_nlg_en",
|
95 |
+
"prompt_name": "PALM_prompt",
|
96 |
+
"rougeLsum_precision": 0.07260565563718514,
|
97 |
+
"dataset_path": "GEM/web_nlg",
|
98 |
+
"dataset_name": "en",
|
99 |
+
"subset": null,
|
100 |
+
"rougeLsum_precision_stderr": 0.0027622865524293628
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"task_name": "GEM/web_nlg_en",
|
104 |
+
"prompt_name": "PALM_prompt",
|
105 |
+
"rougeLsum_recall": 0.2312007323793673,
|
106 |
+
"dataset_path": "GEM/web_nlg",
|
107 |
+
"dataset_name": "en",
|
108 |
+
"subset": null,
|
109 |
+
"rougeLsum_recall_stderr": 0.004666750865618609
|
110 |
+
},
|
111 |
+
{
|
112 |
+
"task_name": "GEM/web_nlg_en",
|
113 |
+
"prompt_name": "PALM_prompt",
|
114 |
+
"rougeLsum_fmeasure": 0.09063319866429098,
|
115 |
+
"dataset_path": "GEM/web_nlg",
|
116 |
+
"dataset_name": "en",
|
117 |
+
"subset": null,
|
118 |
+
"rougeLsum_fmeasure_stderr": 0.002018782468480028
|
119 |
+
}
|
120 |
+
],
|
121 |
+
"config": {
|
122 |
+
"model": "hf-causal",
|
123 |
+
"model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-178b-oscar-repetitions/8b7178b25b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16",
|
124 |
+
"task_args": "",
|
125 |
+
"num_fewshot": 0,
|
126 |
+
"batch_size": 16,
|
127 |
+
"device": "cuda",
|
128 |
+
"use_cache": false,
|
129 |
+
"limit": 3000,
|
130 |
+
"bootstrap_iters": 10,
|
131 |
+
"seed": 1234
|
132 |
+
}
|
133 |
+
}
|
8b7178b25b/evaluation/generation/slim.8b7178b25b_GEM-web_nlg_en_PALM_prompt_1.json
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": [
|
3 |
+
{
|
4 |
+
"task_name": "GEM/web_nlg_en",
|
5 |
+
"prompt_name": "PALM_prompt",
|
6 |
+
"bleu": 0.5152510207869508,
|
7 |
+
"dataset_path": "GEM/web_nlg",
|
8 |
+
"dataset_name": "en",
|
9 |
+
"subset": null,
|
10 |
+
"bleu_stderr": 0.039697768768641464
|
11 |
+
},
|
12 |
+
{
|
13 |
+
"task_name": "GEM/web_nlg_en",
|
14 |
+
"prompt_name": "PALM_prompt",
|
15 |
+
"rouge1_precision": 0.1335251141437586,
|
16 |
+
"dataset_path": "GEM/web_nlg",
|
17 |
+
"dataset_name": "en",
|
18 |
+
"subset": null,
|
19 |
+
"rouge1_precision_stderr": 0.004421796872864802
|
20 |
+
},
|
21 |
+
{
|
22 |
+
"task_name": "GEM/web_nlg_en",
|
23 |
+
"prompt_name": "PALM_prompt",
|
24 |
+
"rouge1_recall": 0.3040669240102272,
|
25 |
+
"dataset_path": "GEM/web_nlg",
|
26 |
+
"dataset_name": "en",
|
27 |
+
"subset": null,
|
28 |
+
"rouge1_recall_stderr": 0.0049926465687368735
|
29 |
+
},
|
30 |
+
{
|
31 |
+
"task_name": "GEM/web_nlg_en",
|
32 |
+
"prompt_name": "PALM_prompt",
|
33 |
+
"rouge1_fmeasure": 0.15419793855600986,
|
34 |
+
"dataset_path": "GEM/web_nlg",
|
35 |
+
"dataset_name": "en",
|
36 |
+
"subset": null,
|
37 |
+
"rouge1_fmeasure_stderr": 0.0037752055082234935
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"task_name": "GEM/web_nlg_en",
|
41 |
+
"prompt_name": "PALM_prompt",
|
42 |
+
"rouge2_precision": 0.06857339375782437,
|
43 |
+
"dataset_path": "GEM/web_nlg",
|
44 |
+
"dataset_name": "en",
|
45 |
+
"subset": null,
|
46 |
+
"rouge2_precision_stderr": 0.0030273264083127568
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"task_name": "GEM/web_nlg_en",
|
50 |
+
"prompt_name": "PALM_prompt",
|
51 |
+
"rouge2_recall": 0.1555986112064758,
|
52 |
+
"dataset_path": "GEM/web_nlg",
|
53 |
+
"dataset_name": "en",
|
54 |
+
"subset": null,
|
55 |
+
"rouge2_recall_stderr": 0.0036341014671041087
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"task_name": "GEM/web_nlg_en",
|
59 |
+
"prompt_name": "PALM_prompt",
|
60 |
+
"rouge2_fmeasure": 0.07820906828691397,
|
61 |
+
"dataset_path": "GEM/web_nlg",
|
62 |
+
"dataset_name": "en",
|
63 |
+
"subset": null,
|
64 |
+
"rouge2_fmeasure_stderr": 0.0026222161094111586
|
65 |
+
},
|
66 |
+
{
|
67 |
+
"task_name": "GEM/web_nlg_en",
|
68 |
+
"prompt_name": "PALM_prompt",
|
69 |
+
"rougeL_precision": 0.1195649771956543,
|
70 |
+
"dataset_path": "GEM/web_nlg",
|
71 |
+
"dataset_name": "en",
|
72 |
+
"subset": null,
|
73 |
+
"rougeL_precision_stderr": 0.0038518942294089972
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"task_name": "GEM/web_nlg_en",
|
77 |
+
"prompt_name": "PALM_prompt",
|
78 |
+
"rougeL_recall": 0.2838951533263151,
|
79 |
+
"dataset_path": "GEM/web_nlg",
|
80 |
+
"dataset_name": "en",
|
81 |
+
"subset": null,
|
82 |
+
"rougeL_recall_stderr": 0.004599064364517073
|
83 |
+
},
|
84 |
+
{
|
85 |
+
"task_name": "GEM/web_nlg_en",
|
86 |
+
"prompt_name": "PALM_prompt",
|
87 |
+
"rougeL_fmeasure": 0.13965714245032726,
|
88 |
+
"dataset_path": "GEM/web_nlg",
|
89 |
+
"dataset_name": "en",
|
90 |
+
"subset": null,
|
91 |
+
"rougeL_fmeasure_stderr": 0.0032487392690607572
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"task_name": "GEM/web_nlg_en",
|
95 |
+
"prompt_name": "PALM_prompt",
|
96 |
+
"rougeLsum_precision": 0.12140487798820795,
|
97 |
+
"dataset_path": "GEM/web_nlg",
|
98 |
+
"dataset_name": "en",
|
99 |
+
"subset": null,
|
100 |
+
"rougeLsum_precision_stderr": 0.003915984273012587
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"task_name": "GEM/web_nlg_en",
|
104 |
+
"prompt_name": "PALM_prompt",
|
105 |
+
"rougeLsum_recall": 0.2857833042522088,
|
106 |
+
"dataset_path": "GEM/web_nlg",
|
107 |
+
"dataset_name": "en",
|
108 |
+
"subset": null,
|
109 |
+
"rougeLsum_recall_stderr": 0.004601461544101827
|
110 |
+
},
|
111 |
+
{
|
112 |
+
"task_name": "GEM/web_nlg_en",
|
113 |
+
"prompt_name": "PALM_prompt",
|
114 |
+
"rougeLsum_fmeasure": 0.14150307262693815,
|
115 |
+
"dataset_path": "GEM/web_nlg",
|
116 |
+
"dataset_name": "en",
|
117 |
+
"subset": null,
|
118 |
+
"rougeLsum_fmeasure_stderr": 0.0033007395324502467
|
119 |
+
}
|
120 |
+
],
|
121 |
+
"config": {
|
122 |
+
"model": "hf-causal",
|
123 |
+
"model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-178b-oscar-repetitions/8b7178b25b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16",
|
124 |
+
"task_args": "",
|
125 |
+
"num_fewshot": 1,
|
126 |
+
"batch_size": 16,
|
127 |
+
"device": "cuda",
|
128 |
+
"use_cache": false,
|
129 |
+
"limit": 3000,
|
130 |
+
"bootstrap_iters": 10,
|
131 |
+
"seed": 1234
|
132 |
+
}
|
133 |
+
}
|
8b7178b25b/evaluation/generation/slim.8b7178b25b_GEM-web_nlg_en_PALM_prompt_2.json
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": [
|
3 |
+
{
|
4 |
+
"task_name": "GEM/web_nlg_en",
|
5 |
+
"prompt_name": "PALM_prompt",
|
6 |
+
"bleu": 0.6450721424031474,
|
7 |
+
"dataset_path": "GEM/web_nlg",
|
8 |
+
"dataset_name": "en",
|
9 |
+
"subset": null,
|
10 |
+
"bleu_stderr": 0.035938592978876936
|
11 |
+
},
|
12 |
+
{
|
13 |
+
"task_name": "GEM/web_nlg_en",
|
14 |
+
"prompt_name": "PALM_prompt",
|
15 |
+
"rouge1_precision": 0.17715496451419446,
|
16 |
+
"dataset_path": "GEM/web_nlg",
|
17 |
+
"dataset_name": "en",
|
18 |
+
"subset": null,
|
19 |
+
"rouge1_precision_stderr": 0.005377686826508908
|
20 |
+
},
|
21 |
+
{
|
22 |
+
"task_name": "GEM/web_nlg_en",
|
23 |
+
"prompt_name": "PALM_prompt",
|
24 |
+
"rouge1_recall": 0.3442204927205235,
|
25 |
+
"dataset_path": "GEM/web_nlg",
|
26 |
+
"dataset_name": "en",
|
27 |
+
"subset": null,
|
28 |
+
"rouge1_recall_stderr": 0.00499209962075588
|
29 |
+
},
|
30 |
+
{
|
31 |
+
"task_name": "GEM/web_nlg_en",
|
32 |
+
"prompt_name": "PALM_prompt",
|
33 |
+
"rouge1_fmeasure": 0.19228537050298922,
|
34 |
+
"dataset_path": "GEM/web_nlg",
|
35 |
+
"dataset_name": "en",
|
36 |
+
"subset": null,
|
37 |
+
"rouge1_fmeasure_stderr": 0.004356183491682661
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"task_name": "GEM/web_nlg_en",
|
41 |
+
"prompt_name": "PALM_prompt",
|
42 |
+
"rouge2_precision": 0.09659406582034752,
|
43 |
+
"dataset_path": "GEM/web_nlg",
|
44 |
+
"dataset_name": "en",
|
45 |
+
"subset": null,
|
46 |
+
"rouge2_precision_stderr": 0.0036720254666308344
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"task_name": "GEM/web_nlg_en",
|
50 |
+
"prompt_name": "PALM_prompt",
|
51 |
+
"rouge2_recall": 0.1816245156374427,
|
52 |
+
"dataset_path": "GEM/web_nlg",
|
53 |
+
"dataset_name": "en",
|
54 |
+
"subset": null,
|
55 |
+
"rouge2_recall_stderr": 0.0038421174433974025
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"task_name": "GEM/web_nlg_en",
|
59 |
+
"prompt_name": "PALM_prompt",
|
60 |
+
"rouge2_fmeasure": 0.1017490401630499,
|
61 |
+
"dataset_path": "GEM/web_nlg",
|
62 |
+
"dataset_name": "en",
|
63 |
+
"subset": null,
|
64 |
+
"rouge2_fmeasure_stderr": 0.003080557280075834
|
65 |
+
},
|
66 |
+
{
|
67 |
+
"task_name": "GEM/web_nlg_en",
|
68 |
+
"prompt_name": "PALM_prompt",
|
69 |
+
"rougeL_precision": 0.15519367504713033,
|
70 |
+
"dataset_path": "GEM/web_nlg",
|
71 |
+
"dataset_name": "en",
|
72 |
+
"subset": null,
|
73 |
+
"rougeL_precision_stderr": 0.004580706449804959
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"task_name": "GEM/web_nlg_en",
|
77 |
+
"prompt_name": "PALM_prompt",
|
78 |
+
"rougeL_recall": 0.31893881029765586,
|
79 |
+
"dataset_path": "GEM/web_nlg",
|
80 |
+
"dataset_name": "en",
|
81 |
+
"subset": null,
|
82 |
+
"rougeL_recall_stderr": 0.004597766706728441
|
83 |
+
},
|
84 |
+
{
|
85 |
+
"task_name": "GEM/web_nlg_en",
|
86 |
+
"prompt_name": "PALM_prompt",
|
87 |
+
"rougeL_fmeasure": 0.17158392384169643,
|
88 |
+
"dataset_path": "GEM/web_nlg",
|
89 |
+
"dataset_name": "en",
|
90 |
+
"subset": null,
|
91 |
+
"rougeL_fmeasure_stderr": 0.0037128302671958994
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"task_name": "GEM/web_nlg_en",
|
95 |
+
"prompt_name": "PALM_prompt",
|
96 |
+
"rougeLsum_precision": 0.1592800915810083,
|
97 |
+
"dataset_path": "GEM/web_nlg",
|
98 |
+
"dataset_name": "en",
|
99 |
+
"subset": null,
|
100 |
+
"rougeLsum_precision_stderr": 0.0047149524911017215
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"task_name": "GEM/web_nlg_en",
|
104 |
+
"prompt_name": "PALM_prompt",
|
105 |
+
"rougeLsum_recall": 0.3221825821541532,
|
106 |
+
"dataset_path": "GEM/web_nlg",
|
107 |
+
"dataset_name": "en",
|
108 |
+
"subset": null,
|
109 |
+
"rougeLsum_recall_stderr": 0.0046252310161258746
|
110 |
+
},
|
111 |
+
{
|
112 |
+
"task_name": "GEM/web_nlg_en",
|
113 |
+
"prompt_name": "PALM_prompt",
|
114 |
+
"rougeLsum_fmeasure": 0.17498254398589475,
|
115 |
+
"dataset_path": "GEM/web_nlg",
|
116 |
+
"dataset_name": "en",
|
117 |
+
"subset": null,
|
118 |
+
"rougeLsum_fmeasure_stderr": 0.0037985612156152086
|
119 |
+
}
|
120 |
+
],
|
121 |
+
"config": {
|
122 |
+
"model": "hf-causal",
|
123 |
+
"model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-178b-oscar-repetitions/8b7178b25b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16",
|
124 |
+
"task_args": "",
|
125 |
+
"num_fewshot": 2,
|
126 |
+
"batch_size": 16,
|
127 |
+
"device": "cuda",
|
128 |
+
"use_cache": false,
|
129 |
+
"limit": 3000,
|
130 |
+
"bootstrap_iters": 10,
|
131 |
+
"seed": 1234
|
132 |
+
}
|
133 |
+
}
|
8b7178b25b/evaluation/generation/slim.8b7178b25b_GEM-web_nlg_en_PALM_prompt_3.json
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": [
|
3 |
+
{
|
4 |
+
"task_name": "GEM/web_nlg_en",
|
5 |
+
"prompt_name": "PALM_prompt",
|
6 |
+
"bleu": 0.8785043636862591,
|
7 |
+
"dataset_path": "GEM/web_nlg",
|
8 |
+
"dataset_name": "en",
|
9 |
+
"subset": null,
|
10 |
+
"bleu_stderr": 0.02652000083973547
|
11 |
+
},
|
12 |
+
{
|
13 |
+
"task_name": "GEM/web_nlg_en",
|
14 |
+
"prompt_name": "PALM_prompt",
|
15 |
+
"rouge1_precision": 0.2002191357399255,
|
16 |
+
"dataset_path": "GEM/web_nlg",
|
17 |
+
"dataset_name": "en",
|
18 |
+
"subset": null,
|
19 |
+
"rouge1_precision_stderr": 0.005700191155087746
|
20 |
+
},
|
21 |
+
{
|
22 |
+
"task_name": "GEM/web_nlg_en",
|
23 |
+
"prompt_name": "PALM_prompt",
|
24 |
+
"rouge1_recall": 0.3622650735119951,
|
25 |
+
"dataset_path": "GEM/web_nlg",
|
26 |
+
"dataset_name": "en",
|
27 |
+
"subset": null,
|
28 |
+
"rouge1_recall_stderr": 0.005105318033672305
|
29 |
+
},
|
30 |
+
{
|
31 |
+
"task_name": "GEM/web_nlg_en",
|
32 |
+
"prompt_name": "PALM_prompt",
|
33 |
+
"rouge1_fmeasure": 0.21217682060449367,
|
34 |
+
"dataset_path": "GEM/web_nlg",
|
35 |
+
"dataset_name": "en",
|
36 |
+
"subset": null,
|
37 |
+
"rouge1_fmeasure_stderr": 0.004581243352642801
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"task_name": "GEM/web_nlg_en",
|
41 |
+
"prompt_name": "PALM_prompt",
|
42 |
+
"rouge2_precision": 0.10955905558045385,
|
43 |
+
"dataset_path": "GEM/web_nlg",
|
44 |
+
"dataset_name": "en",
|
45 |
+
"subset": null,
|
46 |
+
"rouge2_precision_stderr": 0.0038849982073218873
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"task_name": "GEM/web_nlg_en",
|
50 |
+
"prompt_name": "PALM_prompt",
|
51 |
+
"rouge2_recall": 0.19262377036723086,
|
52 |
+
"dataset_path": "GEM/web_nlg",
|
53 |
+
"dataset_name": "en",
|
54 |
+
"subset": null,
|
55 |
+
"rouge2_recall_stderr": 0.003902442560309681
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"task_name": "GEM/web_nlg_en",
|
59 |
+
"prompt_name": "PALM_prompt",
|
60 |
+
"rouge2_fmeasure": 0.11312048852329888,
|
61 |
+
"dataset_path": "GEM/web_nlg",
|
62 |
+
"dataset_name": "en",
|
63 |
+
"subset": null,
|
64 |
+
"rouge2_fmeasure_stderr": 0.003186877123824252
|
65 |
+
},
|
66 |
+
{
|
67 |
+
"task_name": "GEM/web_nlg_en",
|
68 |
+
"prompt_name": "PALM_prompt",
|
69 |
+
"rougeL_precision": 0.1744946205047383,
|
70 |
+
"dataset_path": "GEM/web_nlg",
|
71 |
+
"dataset_name": "en",
|
72 |
+
"subset": null,
|
73 |
+
"rougeL_precision_stderr": 0.004899868234689971
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"task_name": "GEM/web_nlg_en",
|
77 |
+
"prompt_name": "PALM_prompt",
|
78 |
+
"rougeL_recall": 0.33190561350734876,
|
79 |
+
"dataset_path": "GEM/web_nlg",
|
80 |
+
"dataset_name": "en",
|
81 |
+
"subset": null,
|
82 |
+
"rougeL_recall_stderr": 0.004628476785750535
|
83 |
+
},
|
84 |
+
{
|
85 |
+
"task_name": "GEM/web_nlg_en",
|
86 |
+
"prompt_name": "PALM_prompt",
|
87 |
+
"rougeL_fmeasure": 0.1874319081280966,
|
88 |
+
"dataset_path": "GEM/web_nlg",
|
89 |
+
"dataset_name": "en",
|
90 |
+
"subset": null,
|
91 |
+
"rougeL_fmeasure_stderr": 0.0038899168243038715
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"task_name": "GEM/web_nlg_en",
|
95 |
+
"prompt_name": "PALM_prompt",
|
96 |
+
"rougeLsum_precision": 0.17972186968155374,
|
97 |
+
"dataset_path": "GEM/web_nlg",
|
98 |
+
"dataset_name": "en",
|
99 |
+
"subset": null,
|
100 |
+
"rougeLsum_precision_stderr": 0.005058207025529124
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"task_name": "GEM/web_nlg_en",
|
104 |
+
"prompt_name": "PALM_prompt",
|
105 |
+
"rougeLsum_recall": 0.33723235220496645,
|
106 |
+
"dataset_path": "GEM/web_nlg",
|
107 |
+
"dataset_name": "en",
|
108 |
+
"subset": null,
|
109 |
+
"rougeLsum_recall_stderr": 0.0046889691038068775
|
110 |
+
},
|
111 |
+
{
|
112 |
+
"task_name": "GEM/web_nlg_en",
|
113 |
+
"prompt_name": "PALM_prompt",
|
114 |
+
"rougeLsum_fmeasure": 0.19207381785134825,
|
115 |
+
"dataset_path": "GEM/web_nlg",
|
116 |
+
"dataset_name": "en",
|
117 |
+
"subset": null,
|
118 |
+
"rougeLsum_fmeasure_stderr": 0.004003703743860644
|
119 |
+
}
|
120 |
+
],
|
121 |
+
"config": {
|
122 |
+
"model": "hf-causal",
|
123 |
+
"model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-178b-oscar-repetitions/8b7178b25b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16",
|
124 |
+
"task_args": "",
|
125 |
+
"num_fewshot": 3,
|
126 |
+
"batch_size": 16,
|
127 |
+
"device": "cuda",
|
128 |
+
"use_cache": false,
|
129 |
+
"limit": 3000,
|
130 |
+
"bootstrap_iters": 10,
|
131 |
+
"seed": 1234
|
132 |
+
}
|
133 |
+
}
|
8b7178b25b/evaluation/generation/slim.8b7178b25b_GEM-web_nlg_en_PALM_prompt_4.json
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": [
|
3 |
+
{
|
4 |
+
"task_name": "GEM/web_nlg_en",
|
5 |
+
"prompt_name": "PALM_prompt",
|
6 |
+
"bleu": 1.020225734756704,
|
7 |
+
"dataset_path": "GEM/web_nlg",
|
8 |
+
"dataset_name": "en",
|
9 |
+
"subset": null,
|
10 |
+
"bleu_stderr": 0.06946466420275214
|
11 |
+
},
|
12 |
+
{
|
13 |
+
"task_name": "GEM/web_nlg_en",
|
14 |
+
"prompt_name": "PALM_prompt",
|
15 |
+
"rouge1_precision": 0.21447559212644274,
|
16 |
+
"dataset_path": "GEM/web_nlg",
|
17 |
+
"dataset_name": "en",
|
18 |
+
"subset": null,
|
19 |
+
"rouge1_precision_stderr": 0.005787602630220149
|
20 |
+
},
|
21 |
+
{
|
22 |
+
"task_name": "GEM/web_nlg_en",
|
23 |
+
"prompt_name": "PALM_prompt",
|
24 |
+
"rouge1_recall": 0.3797811786576114,
|
25 |
+
"dataset_path": "GEM/web_nlg",
|
26 |
+
"dataset_name": "en",
|
27 |
+
"subset": null,
|
28 |
+
"rouge1_recall_stderr": 0.005078572769442694
|
29 |
+
},
|
30 |
+
{
|
31 |
+
"task_name": "GEM/web_nlg_en",
|
32 |
+
"prompt_name": "PALM_prompt",
|
33 |
+
"rouge1_fmeasure": 0.22615455778377724,
|
34 |
+
"dataset_path": "GEM/web_nlg",
|
35 |
+
"dataset_name": "en",
|
36 |
+
"subset": null,
|
37 |
+
"rouge1_fmeasure_stderr": 0.004584303113870005
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"task_name": "GEM/web_nlg_en",
|
41 |
+
"prompt_name": "PALM_prompt",
|
42 |
+
"rouge2_precision": 0.11802182161980528,
|
43 |
+
"dataset_path": "GEM/web_nlg",
|
44 |
+
"dataset_name": "en",
|
45 |
+
"subset": null,
|
46 |
+
"rouge2_precision_stderr": 0.003954053081043237
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"task_name": "GEM/web_nlg_en",
|
50 |
+
"prompt_name": "PALM_prompt",
|
51 |
+
"rouge2_recall": 0.20495230642568182,
|
52 |
+
"dataset_path": "GEM/web_nlg",
|
53 |
+
"dataset_name": "en",
|
54 |
+
"subset": null,
|
55 |
+
"rouge2_recall_stderr": 0.003956396099130858
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"task_name": "GEM/web_nlg_en",
|
59 |
+
"prompt_name": "PALM_prompt",
|
60 |
+
"rouge2_fmeasure": 0.12153309984630654,
|
61 |
+
"dataset_path": "GEM/web_nlg",
|
62 |
+
"dataset_name": "en",
|
63 |
+
"subset": null,
|
64 |
+
"rouge2_fmeasure_stderr": 0.0032009564132827184
|
65 |
+
},
|
66 |
+
{
|
67 |
+
"task_name": "GEM/web_nlg_en",
|
68 |
+
"prompt_name": "PALM_prompt",
|
69 |
+
"rougeL_precision": 0.18574729294363898,
|
70 |
+
"dataset_path": "GEM/web_nlg",
|
71 |
+
"dataset_name": "en",
|
72 |
+
"subset": null,
|
73 |
+
"rougeL_precision_stderr": 0.00493965653212434
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"task_name": "GEM/web_nlg_en",
|
77 |
+
"prompt_name": "PALM_prompt",
|
78 |
+
"rougeL_recall": 0.34661430398431914,
|
79 |
+
"dataset_path": "GEM/web_nlg",
|
80 |
+
"dataset_name": "en",
|
81 |
+
"subset": null,
|
82 |
+
"rougeL_recall_stderr": 0.004643977843173891
|
83 |
+
},
|
84 |
+
{
|
85 |
+
"task_name": "GEM/web_nlg_en",
|
86 |
+
"prompt_name": "PALM_prompt",
|
87 |
+
"rougeL_fmeasure": 0.1985084531863174,
|
88 |
+
"dataset_path": "GEM/web_nlg",
|
89 |
+
"dataset_name": "en",
|
90 |
+
"subset": null,
|
91 |
+
"rougeL_fmeasure_stderr": 0.003863020108912202
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"task_name": "GEM/web_nlg_en",
|
95 |
+
"prompt_name": "PALM_prompt",
|
96 |
+
"rougeLsum_precision": 0.19295820334137398,
|
97 |
+
"dataset_path": "GEM/web_nlg",
|
98 |
+
"dataset_name": "en",
|
99 |
+
"subset": null,
|
100 |
+
"rougeLsum_precision_stderr": 0.005149923293184489
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"task_name": "GEM/web_nlg_en",
|
104 |
+
"prompt_name": "PALM_prompt",
|
105 |
+
"rougeLsum_recall": 0.3532599821115898,
|
106 |
+
"dataset_path": "GEM/web_nlg",
|
107 |
+
"dataset_name": "en",
|
108 |
+
"subset": null,
|
109 |
+
"rougeLsum_recall_stderr": 0.004685486372918684
|
110 |
+
},
|
111 |
+
{
|
112 |
+
"task_name": "GEM/web_nlg_en",
|
113 |
+
"prompt_name": "PALM_prompt",
|
114 |
+
"rougeLsum_fmeasure": 0.20493355705865743,
|
115 |
+
"dataset_path": "GEM/web_nlg",
|
116 |
+
"dataset_name": "en",
|
117 |
+
"subset": null,
|
118 |
+
"rougeLsum_fmeasure_stderr": 0.004011218572127487
|
119 |
+
}
|
120 |
+
],
|
121 |
+
"config": {
|
122 |
+
"model": "hf-causal",
|
123 |
+
"model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-178b-oscar-repetitions/8b7178b25b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16",
|
124 |
+
"task_args": "",
|
125 |
+
"num_fewshot": 4,
|
126 |
+
"batch_size": 16,
|
127 |
+
"device": "cuda",
|
128 |
+
"use_cache": false,
|
129 |
+
"limit": 3000,
|
130 |
+
"bootstrap_iters": 10,
|
131 |
+
"seed": 1234
|
132 |
+
}
|
133 |
+
}
|
8b7178b25b/evaluation/generation/slim.8b7178b25b_GEM-web_nlg_en_PALM_prompt_5.json
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": [
|
3 |
+
{
|
4 |
+
"task_name": "GEM/web_nlg_en",
|
5 |
+
"prompt_name": "PALM_prompt",
|
6 |
+
"bleu": 1.1738991703843653,
|
7 |
+
"dataset_path": "GEM/web_nlg",
|
8 |
+
"dataset_name": "en",
|
9 |
+
"subset": null,
|
10 |
+
"bleu_stderr": 0.05137420728965795
|
11 |
+
},
|
12 |
+
{
|
13 |
+
"task_name": "GEM/web_nlg_en",
|
14 |
+
"prompt_name": "PALM_prompt",
|
15 |
+
"rouge1_precision": 0.23842752486609714,
|
16 |
+
"dataset_path": "GEM/web_nlg",
|
17 |
+
"dataset_name": "en",
|
18 |
+
"subset": null,
|
19 |
+
"rouge1_precision_stderr": 0.00616558462817229
|
20 |
+
},
|
21 |
+
{
|
22 |
+
"task_name": "GEM/web_nlg_en",
|
23 |
+
"prompt_name": "PALM_prompt",
|
24 |
+
"rouge1_recall": 0.39104608539227964,
|
25 |
+
"dataset_path": "GEM/web_nlg",
|
26 |
+
"dataset_name": "en",
|
27 |
+
"subset": null,
|
28 |
+
"rouge1_recall_stderr": 0.005079097315439687
|
29 |
+
},
|
30 |
+
{
|
31 |
+
"task_name": "GEM/web_nlg_en",
|
32 |
+
"prompt_name": "PALM_prompt",
|
33 |
+
"rouge1_fmeasure": 0.2452749113827306,
|
34 |
+
"dataset_path": "GEM/web_nlg",
|
35 |
+
"dataset_name": "en",
|
36 |
+
"subset": null,
|
37 |
+
"rouge1_fmeasure_stderr": 0.004866057995099286
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"task_name": "GEM/web_nlg_en",
|
41 |
+
"prompt_name": "PALM_prompt",
|
42 |
+
"rouge2_precision": 0.13743673376990653,
|
43 |
+
"dataset_path": "GEM/web_nlg",
|
44 |
+
"dataset_name": "en",
|
45 |
+
"subset": null,
|
46 |
+
"rouge2_precision_stderr": 0.004448566773563913
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"task_name": "GEM/web_nlg_en",
|
50 |
+
"prompt_name": "PALM_prompt",
|
51 |
+
"rouge2_recall": 0.21617363071605727,
|
52 |
+
"dataset_path": "GEM/web_nlg",
|
53 |
+
"dataset_name": "en",
|
54 |
+
"subset": null,
|
55 |
+
"rouge2_recall_stderr": 0.004065117072186819
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"task_name": "GEM/web_nlg_en",
|
59 |
+
"prompt_name": "PALM_prompt",
|
60 |
+
"rouge2_fmeasure": 0.13673599319945717,
|
61 |
+
"dataset_path": "GEM/web_nlg",
|
62 |
+
"dataset_name": "en",
|
63 |
+
"subset": null,
|
64 |
+
"rouge2_fmeasure_stderr": 0.003545382189555846
|
65 |
+
},
|
66 |
+
{
|
67 |
+
"task_name": "GEM/web_nlg_en",
|
68 |
+
"prompt_name": "PALM_prompt",
|
69 |
+
"rougeL_precision": 0.20669362004199143,
|
70 |
+
"dataset_path": "GEM/web_nlg",
|
71 |
+
"dataset_name": "en",
|
72 |
+
"subset": null,
|
73 |
+
"rougeL_precision_stderr": 0.0053303444381744315
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"task_name": "GEM/web_nlg_en",
|
77 |
+
"prompt_name": "PALM_prompt",
|
78 |
+
"rougeL_recall": 0.35345362943589836,
|
79 |
+
"dataset_path": "GEM/web_nlg",
|
80 |
+
"dataset_name": "en",
|
81 |
+
"subset": null,
|
82 |
+
"rougeL_recall_stderr": 0.004581784867877382
|
83 |
+
},
|
84 |
+
{
|
85 |
+
"task_name": "GEM/web_nlg_en",
|
86 |
+
"prompt_name": "PALM_prompt",
|
87 |
+
"rougeL_fmeasure": 0.2145149869812429,
|
88 |
+
"dataset_path": "GEM/web_nlg",
|
89 |
+
"dataset_name": "en",
|
90 |
+
"subset": null,
|
91 |
+
"rougeL_fmeasure_stderr": 0.004135695136449003
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"task_name": "GEM/web_nlg_en",
|
95 |
+
"prompt_name": "PALM_prompt",
|
96 |
+
"rougeLsum_precision": 0.21482050441032427,
|
97 |
+
"dataset_path": "GEM/web_nlg",
|
98 |
+
"dataset_name": "en",
|
99 |
+
"subset": null,
|
100 |
+
"rougeLsum_precision_stderr": 0.005549487778372521
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"task_name": "GEM/web_nlg_en",
|
104 |
+
"prompt_name": "PALM_prompt",
|
105 |
+
"rougeLsum_recall": 0.3612051449037077,
|
106 |
+
"dataset_path": "GEM/web_nlg",
|
107 |
+
"dataset_name": "en",
|
108 |
+
"subset": null,
|
109 |
+
"rougeLsum_recall_stderr": 0.004657096205531439
|
110 |
+
},
|
111 |
+
{
|
112 |
+
"task_name": "GEM/web_nlg_en",
|
113 |
+
"prompt_name": "PALM_prompt",
|
114 |
+
"rougeLsum_fmeasure": 0.22169261840373009,
|
115 |
+
"dataset_path": "GEM/web_nlg",
|
116 |
+
"dataset_name": "en",
|
117 |
+
"subset": null,
|
118 |
+
"rougeLsum_fmeasure_stderr": 0.004292938565416988
|
119 |
+
}
|
120 |
+
],
|
121 |
+
"config": {
|
122 |
+
"model": "hf-causal",
|
123 |
+
"model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-8b7-178b-oscar-repetitions/8b7178b25b/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16",
|
124 |
+
"task_args": "",
|
125 |
+
"num_fewshot": 5,
|
126 |
+
"batch_size": 16,
|
127 |
+
"device": "cuda",
|
128 |
+
"use_cache": false,
|
129 |
+
"limit": 3000,
|
130 |
+
"bootstrap_iters": 10,
|
131 |
+
"seed": 1234
|
132 |
+
}
|
133 |
+
}
|