|
from share import * |
|
|
|
import pytorch_lightning as pl |
|
from torch.utils.data import DataLoader |
|
from laion_face_dataset import LaionDataset |
|
from cldm.logger import ImageLogger |
|
from cldm.model import create_model, load_state_dict |
|
|
|
|
|
|
|
resume_path = './models/controlnet_sd15_laion_face.ckpt' |
|
batch_size = 8 |
|
logger_freq = 2500 |
|
learning_rate = 1e-5 |
|
sd_locked = True |
|
only_mid_control = False |
|
|
|
|
|
model = create_model('./models/cldm_v15.yaml').cpu() |
|
model.load_state_dict(load_state_dict(resume_path, location='cpu')) |
|
model.learning_rate = learning_rate |
|
model.sd_locked = sd_locked |
|
model.only_mid_control = only_mid_control |
|
|
|
|
|
ckpt_callback = pl.callbacks.ModelCheckpoint( |
|
dirpath="./checkpoints/", |
|
filename="controlnet_sd15_laion_face_{epoch}_{step}_{loss}.ckpt", |
|
monitor='train/loss_simple_step', |
|
save_top_k=5, |
|
every_n_train_steps=5000, |
|
save_last=True, |
|
) |
|
|
|
|
|
dataset = LaionDataset() |
|
dataloader = DataLoader(dataset, num_workers=0, batch_size=batch_size, shuffle=True) |
|
logger = ImageLogger(batch_frequency=logger_freq) |
|
trainer = pl.Trainer(gpus=1, precision=32, callbacks=[logger, ckpt_callback]) |
|
|
|
|
|
trainer.fit(model, dataloader) |