|
import json |
|
import numpy |
|
import os |
|
from PIL import Image |
|
from torch.utils.data import Dataset |
|
|
|
|
|
class LaionDataset(Dataset): |
|
def __init__(self): |
|
self.data = [] |
|
with open('./training/laion-face-processed/prompt.jsonl', 'rt') as f: |
|
for line in f: |
|
self.data.append(json.loads(line)) |
|
|
|
def __len__(self): |
|
return len(self.data) |
|
|
|
def __getitem__(self, idx): |
|
item = self.data[idx] |
|
|
|
source_filename = os.path.split(item['source'])[-1] |
|
target_filename = os.path.split(item['target'])[-1] |
|
prompt = item['prompt'] |
|
|
|
|
|
if not prompt: |
|
print(f"Image with index {idx} / {source_filename} has no text.") |
|
prompt = "an image" |
|
|
|
source_image = Image.open('./training/laion-face-processed/source/' + source_filename).convert("RGB") |
|
target_image = Image.open('./training/laion-face-processed/target/' + target_filename).convert("RGB") |
|
|
|
|
|
|
|
img_size = source_image.size |
|
scale_factor = 512/min(img_size) |
|
source_image = source_image.resize((1+int(img_size[0]*scale_factor), 1+int(img_size[1]*scale_factor))) |
|
target_image = target_image.resize((1+int(img_size[0]*scale_factor), 1+int(img_size[1]*scale_factor))) |
|
img_size = source_image.size |
|
left_padding = (img_size[0] - 512)//2 |
|
top_padding = (img_size[1] - 512)//2 |
|
source_image = source_image.crop((left_padding, top_padding, left_padding+512, top_padding+512)) |
|
target_image = target_image.crop((left_padding, top_padding, left_padding+512, top_padding+512)) |
|
|
|
source = numpy.asarray(source_image) |
|
target = numpy.asarray(target_image) |
|
|
|
|
|
source = source.astype(numpy.float32) / 255.0 |
|
|
|
|
|
target = (target.astype(numpy.float32) / 127.5) - 1.0 |
|
|
|
return dict(jpg=target, txt=prompt, hint=source) |
|
|
|
|