danielmaxwell commited on
Commit
d71cc5a
1 Parent(s): bb8a989

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 263.33 +/- 18.43
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
26
+
27
+ ## Usage (with Stable-baselines3)
28
+ TODO: Add your code
29
+
30
+
31
+ ```python
32
+ from stable_baselines3 import ...
33
+ from huggingface_sb3 import load_from_hub
34
+
35
+ ...
36
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd0c09c7830>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd0c09c78c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd0c09c7950>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd0c09c79e0>", "_build": "<function ActorCriticPolicy._build at 0x7fd0c09c7a70>", "forward": "<function ActorCriticPolicy.forward at 0x7fd0c09c7b00>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd0c09c7b90>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd0c09c7c20>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd0c09c7cb0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd0c09c7d40>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd0c09c7dd0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fd0c0a0eb40>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1660318511.3870811, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACBiTL658Zo/5RDQvu6Wxb6P0KC+vGievQAAAAAAAAAAmrrYPBSohrp4CIS6q+5kteVVxLpVp5k5AACAPwAAgD9NPes92vA5PjloBL5a5ZK+le/Fu73n1LwAAAAAAAAAALPwcr2SD64/g6wLv0U1sb4wTrm8mg1ovgAAAAAAAAAAANLKPNKQ/TzQ0eW9YaRpvhEii73FUwS9AAAAAAAAAAA6PR6+4EewPp6zTz5JbUi+oR0TPfL+Dr0AAAAAAAAAAE0kWL1cSza6BwemuheYorXwp9C3yQTFOQAAgD8AAIA/c0mfvfaEcrrpSA43LtoUMqJDiLm/1ia2AAAAAAAAgD+zHDi99nh1uhWIa7ogFW02fggou0J0iTkAAIA/AACAP7MXbL0UWoa65up/uRo+f7QqSDc79PCUOAAAgD8AAIA/zSg8vCnYTbo6Wzw77yZQs8ahtrrSpV26AACAPwAAgD+z5y69bFDpu8d5HTwuJK88Y5c0PaT1kb0AAIA/AACAPwAI6TuPqmK6kx80uncwnjWmEAu7yrxROQAAgD8AAIA/zdZKPOQa2T5K0xe++p2AvhQUYb2uvDM9AAAAAAAAAAAzLra89uQAusuZvzbJb8ExX0mDOgqd37UAAIA/AACAPw3n0b04W5K7i69nPGesnDxmAey8V8GEPQAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQC/cubDKY0CUhpRSlIwBbJRN6AOMAXSUR0CStC0Qsf7rdX2UKGgGaAloD0MIcy7FVWWxZ0CUhpRSlGgVTegDaBZHQJK2U6cRUWF1fZQoaAZoCWgPQwi0WfW52v9gQJSGlFKUaBVN6ANoFkdAkrwi704BFXV9lChoBmgJaA9DCOw00lK543FAlIaUUpRoFU32AWgWR0CSvOZ5AyEddX2UKGgGaAloD0MIidFzC91LYUCUhpRSlGgVTegDaBZHQJLA7FaSs8x1fZQoaAZoCWgPQwixFp8CYGddQJSGlFKUaBVN6ANoFkdAksQhpcophHV9lChoBmgJaA9DCOfIyi8DqmVAlIaUUpRoFU3oA2gWR0CSxKE6DGtIdX2UKGgGaAloD0MIQNtq1pkZZECUhpRSlGgVTegDaBZHQJLIajWTX8R1fZQoaAZoCWgPQwglB+xqcpNgQJSGlFKUaBVN6ANoFkdAksonpGFzuHV9lChoBmgJaA9DCDtu+N30YmNAlIaUUpRoFU3oA2gWR0CSzSeUILPVdX2UKGgGaAloD0MILlOT4A1xJUCUhpRSlGgVS/doFkdAks+3l8w6AHV9lChoBmgJaA9DCFosRfKV6mNAlIaUUpRoFU3oA2gWR0CS3Fz90ihWdX2UKGgGaAloD0MIFymUhS+bZECUhpRSlGgVTegDaBZHQJLeNIbwSap1fZQoaAZoCWgPQwjDSgUVVdFgQJSGlFKUaBVN6ANoFkdAkuGQLmZE2HV9lChoBmgJaA9DCB08E5okhmJAlIaUUpRoFU3oA2gWR0CS44TRYzSDdX2UKGgGaAloD0MIK8B3mzcjZ0CUhpRSlGgVTegDaBZHQJLtsKNQ0oB1fZQoaAZoCWgPQwhqvHSTmM5jQJSGlFKUaBVN6ANoFkdAkvAyprDZUXV9lChoBmgJaA9DCF+Wdmou7GFAlIaUUpRoFU3oA2gWR0CS8LKfnOjZdX2UKGgGaAloD0MIF7t9VpnKZECUhpRSlGgVTegDaBZHQJMGisV+I/J1fZQoaAZoCWgPQwjk9zb92XFpQJSGlFKUaBVN6ANoFkdAkwuEF4cFQnV9lChoBmgJaA9DCDV9dsD1Q2BAlIaUUpRoFU3oA2gWR0CTDDtVJcxCdX2UKGgGaAloD0MIxf6ye/L9Y0CUhpRSlGgVTegDaBZHQJMTJG/etS11fZQoaAZoCWgPQwiiJCTStj1iQJSGlFKUaBVN6ANoFkdAkxOVj/dZaHV9lChoBmgJaA9DCOGyCpsBCmFAlIaUUpRoFU3oA2gWR0CTFwrN4Z/DdX2UKGgGaAloD0MIJTyh1x8AZECUhpRSlGgVTegDaBZHQJMYln7Hhjx1fZQoaAZoCWgPQwidK0oJwSNyQJSGlFKUaBVNlAFoFkdAkxsHwPRRdnV9lChoBmgJaA9DCNF2TN2VWGFAlIaUUpRoFU3oA2gWR0CTGzkYGdI5dX2UKGgGaAloD0MIGHrE6LnfW0CUhpRSlGgVTegDaBZHQJMdXEgntv51fZQoaAZoCWgPQwgNGvonuP1lQJSGlFKUaBVN6ANoFkdAkyf8+iaiK3V9lChoBmgJaA9DCMhESrN5XGJAlIaUUpRoFU3oA2gWR0CTKcMglnh9dX2UKGgGaAloD0MIrIvbaICdZUCUhpRSlGgVTegDaBZHQJMuOc+aBqd1fZQoaAZoCWgPQwirzmqBPbRgQJSGlFKUaBVN6ANoFkdAkzDs+zMRpXV9lChoBmgJaA9DCPAxWHEqLXBAlIaUUpRoFU1GAWgWR0CTMaXiBGx2dX2UKGgGaAloD0MIDmWoiqlAYUCUhpRSlGgVTegDaBZHQJM7BuHerMl1fZQoaAZoCWgPQwjnFyXor5lgQJSGlFKUaBVN6ANoFkdAkz2PvKEFn3V9lChoBmgJaA9DCLAD54yoOmNAlIaUUpRoFU3oA2gWR0CTU9M3qAz6dX2UKGgGaAloD0MIjlw3pbzpYUCUhpRSlGgVTegDaBZHQJNZKOinHed1fZQoaAZoCWgPQwi4XP3YpHNnQJSGlFKUaBVN6ANoFkdAk1noZ2pyZXV9lChoBmgJaA9DCJD4FWu4cnFAlIaUUpRoFU1GA2gWR0CTW56mfoRqdX2UKGgGaAloD0MIOGkaFM29b0CUhpRSlGgVTckBaBZHQJNc3cGkep51fZQoaAZoCWgPQwj/BYIAGS5dQJSGlFKUaBVN6ANoFkdAk2CTe9Ba93V9lChoBmgJaA9DCE/OUNxxlWFAlIaUUpRoFU3oA2gWR0CTYQUSZjQRdX2UKGgGaAloD0MICvMeZxrjYkCUhpRSlGgVTegDaBZHQJNl/noxHoZ1fZQoaAZoCWgPQwiRQ8TNqRxuQJSGlFKUaBVNxQFoFkdAk2iFOO8013V9lChoBmgJaA9DCK+YEd4ezWBAlIaUUpRoFU3oA2gWR0CTaLL9MsYmdX2UKGgGaAloD0MIUpj3ONPBYkCUhpRSlGgVTegDaBZHQJNo6pxWDHx1fZQoaAZoCWgPQwjUEFX4861wQJSGlFKUaBVNqANoFkdAk3WjC+De03V9lChoBmgJaA9DCH4bYrzmBWFAlIaUUpRoFU3oA2gWR0CTd/ibUgB+dX2UKGgGaAloD0MIIxYx7DANYECUhpRSlGgVTegDaBZHQJN/TkbPyCp1fZQoaAZoCWgPQwgHmPkO/rdgQJSGlFKUaBVN6ANoFkdAk3/c2rGR3nV9lChoBmgJaA9DCBPU8C2sYGtAlIaUUpRoFU2AA2gWR0CTiVcoYvWZdX2UKGgGaAloD0MIBARz9PhQbkCUhpRSlGgVTWICaBZHQJOLuCrcTJ11fZQoaAZoCWgPQwgIkncOZfRdQJSGlFKUaBVN6ANoFkdAk40gxN7BwnV9lChoBmgJaA9DCGUbuAN1XW9AlIaUUpRoFU2cA2gWR0CTqIltCRfXdX2UKGgGaAloD0MIHJWbqKXuYkCUhpRSlGgVTegDaBZHQJOpImXw9aF1fZQoaAZoCWgPQwjf/lw0ZFhcQJSGlFKUaBVN6ANoFkdAk6nV/tpmE3V9lChoBmgJaA9DCL2nctrT52JAlIaUUpRoFU3oA2gWR0CTq4850bLmdX2UKGgGaAloD0MIWFhwP+B0ckCUhpRSlGgVTTUCaBZHQJOuNL127nR1fZQoaAZoCWgPQwhLAP4p1WBiQJSGlFKUaBVN6ANoFkdAk7BmLYPGyXV9lChoBmgJaA9DCJhNgGF52WZAlIaUUpRoFU3oA2gWR0CTsNWpqASWdX2UKGgGaAloD0MIZ9e9FQlbbkCUhpRSlGgVTXECaBZHQJO3sbWEsat1fZQoaAZoCWgPQwhMw/ARsaxmQJSGlFKUaBVN6ANoFkdAk7gmmYSg5HV9lChoBmgJaA9DCGDLK9dbpWZAlIaUUpRoFU3oA2gWR0CTuFQmNR3vdX2UKGgGaAloD0MI2GX4T7f2Y0CUhpRSlGgVTegDaBZHQJO4jDcdo391fZQoaAZoCWgPQwjbbRea68BmQJSGlFKUaBVN6ANoFkdAk8SA2VE/jnV9lChoBmgJaA9DCL5ojxdSOnBAlIaUUpRoFU2lA2gWR0CTyscXFcY7dX2UKGgGaAloD0MIeCefHttCcUCUhpRSlGgVTcYCaBZHQJPSwzch1T11fZQoaAZoCWgPQwjnG9E9q7hxQJSGlFKUaBVNawJoFkdAk9OMuSOinHV9lChoBmgJaA9DCGQ9tfrqWm9AlIaUUpRoFU1zA2gWR0CT1dZqmCRPdX2UKGgGaAloD0MIb7n6sQk/cECUhpRSlGgVTYoDaBZHQJPV1rj5sTF1fZQoaAZoCWgPQwi6FFeVfWxxQJSGlFKUaBVNggJoFkdAk9fLdrO7hHV9lChoBmgJaA9DCD9uv3yySmBAlIaUUpRoFU3oA2gWR0CT2QPQOWjXdX2UKGgGaAloD0MIAOXv3lHZcECUhpRSlGgVTSgCaBZHQJPakU34sVd1fZQoaAZoCWgPQwgGY0Si0HpsQJSGlFKUaBVNogNoFkdAk+AIZ62OQ3V9lChoBmgJaA9DCM07TtERgGNAlIaUUpRoFU3oA2gWR0CT9so4MnZ1dX2UKGgGaAloD0MI0GT/PA3VXUCUhpRSlGgVTegDaBZHQJP5F+F10T11fZQoaAZoCWgPQwhpNo/D4LJsQJSGlFKUaBVN9gFoFkdAk/uJLmITG3V9lChoBmgJaA9DCKd5xyk6IW5AlIaUUpRoFU2DAWgWR0CT/Dao/A0sdX2UKGgGaAloD0MICme3lsnAZECUhpRSlGgVTegDaBZHQJP+KE9Mbm51fZQoaAZoCWgPQwiGAraD0WRwQJSGlFKUaBVNrwNoFkdAlAMu8CgbqHV9lChoBmgJaA9DCI/C9ShcBV5AlIaUUpRoFU3oA2gWR0CUBdFrl/6PdX2UKGgGaAloD0MIMjhKXh0pZUCUhpRSlGgVTegDaBZHQJQGRRQ79yd1fZQoaAZoCWgPQwi4sdmRagpwQJSGlFKUaBVNVgNoFkdAlAokTURWcXV9lChoBmgJaA9DCMyaWOBrvXBAlIaUUpRoFU1EAmgWR0CUCx63y7PIdX2UKGgGaAloD0MILiC0Hj6DbkCUhpRSlGgVTUIBaBZHQJQLLxqfvnd1fZQoaAZoCWgPQwgmxjL9UptxQJSGlFKUaBVNzwJoFkdAlBBwx33Yc3V9lChoBmgJaA9DCDPABdmyP3JAlIaUUpRoFU2rAWgWR0CUEuHRCx/vdX2UKGgGaAloD0MIXkiHhzDGLkCUhpRSlGgVS/RoFkdAlBcDKLbYb3V9lChoBmgJaA9DCB/bMuCsunJAlIaUUpRoFU3uAWgWR0CUFzs052hadX2UKGgGaAloD0MIPfNy2D3hcECUhpRSlGgVTZMDaBZHQJQYaoegctJ1fZQoaAZoCWgPQwjlKEAUTONtQJSGlFKUaBVNmAJoFkdAlBr77TDwY3V9lChoBmgJaA9DCHLfap04vnJAlIaUUpRoFU2zAWgWR0CUHYLDye7MdX2UKGgGaAloD0MIO1J95xcBbkCUhpRSlGgVTcUDaBZHQJQdrOiWVu91fZQoaAZoCWgPQwih2Aqa1khwQJSGlFKUaBVNRwJoFkdAlB3TJIUah3V9lChoBmgJaA9DCOXUzjC18HFAlIaUUpRoFU2dAWgWR0CUIMr8zhxYdX2UKGgGaAloD0MIp6/naxY7cUCUhpRSlGgVTTwCaBZHQJQhlHf/FR51fZQoaAZoCWgPQwhfmiLAaX9iQJSGlFKUaBVN6ANoFkdAlCIUtdzGP3V9lChoBmgJaA9DCKDctu9R02ZAlIaUUpRoFU3oA2gWR0CUI3XvH93sdX2UKGgGaAloD0MIcEBLVzC3ZUCUhpRSlGgVTegDaBZHQJQo9rM1TBJ1fZQoaAZoCWgPQwhFEVK3s+5yQJSGlFKUaBVNfQFoFkdAlCp57XxvvXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6c35ed0bad4996b2780744c077990cc722ddcd495f400dfcbd7891989a4efb84
3
+ size 147154
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd0c09c7830>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd0c09c78c0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd0c09c7950>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd0c09c79e0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fd0c09c7a70>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fd0c09c7b00>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd0c09c7b90>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fd0c09c7c20>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd0c09c7cb0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd0c09c7d40>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd0c09c7dd0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fd0c0a0eb40>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1660318511.3870811,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACBiTL658Zo/5RDQvu6Wxb6P0KC+vGievQAAAAAAAAAAmrrYPBSohrp4CIS6q+5kteVVxLpVp5k5AACAPwAAgD9NPes92vA5PjloBL5a5ZK+le/Fu73n1LwAAAAAAAAAALPwcr2SD64/g6wLv0U1sb4wTrm8mg1ovgAAAAAAAAAAANLKPNKQ/TzQ0eW9YaRpvhEii73FUwS9AAAAAAAAAAA6PR6+4EewPp6zTz5JbUi+oR0TPfL+Dr0AAAAAAAAAAE0kWL1cSza6BwemuheYorXwp9C3yQTFOQAAgD8AAIA/c0mfvfaEcrrpSA43LtoUMqJDiLm/1ia2AAAAAAAAgD+zHDi99nh1uhWIa7ogFW02fggou0J0iTkAAIA/AACAP7MXbL0UWoa65up/uRo+f7QqSDc79PCUOAAAgD8AAIA/zSg8vCnYTbo6Wzw77yZQs8ahtrrSpV26AACAPwAAgD+z5y69bFDpu8d5HTwuJK88Y5c0PaT1kb0AAIA/AACAPwAI6TuPqmK6kx80uncwnjWmEAu7yrxROQAAgD8AAIA/zdZKPOQa2T5K0xe++p2AvhQUYb2uvDM9AAAAAAAAAAAzLra89uQAusuZvzbJb8ExX0mDOgqd37UAAIA/AACAPw3n0b04W5K7i69nPGesnDxmAey8V8GEPQAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQC/cubDKY0CUhpRSlIwBbJRN6AOMAXSUR0CStC0Qsf7rdX2UKGgGaAloD0MIcy7FVWWxZ0CUhpRSlGgVTegDaBZHQJK2U6cRUWF1fZQoaAZoCWgPQwi0WfW52v9gQJSGlFKUaBVN6ANoFkdAkrwi704BFXV9lChoBmgJaA9DCOw00lK543FAlIaUUpRoFU32AWgWR0CSvOZ5AyEddX2UKGgGaAloD0MIidFzC91LYUCUhpRSlGgVTegDaBZHQJLA7FaSs8x1fZQoaAZoCWgPQwixFp8CYGddQJSGlFKUaBVN6ANoFkdAksQhpcophHV9lChoBmgJaA9DCOfIyi8DqmVAlIaUUpRoFU3oA2gWR0CSxKE6DGtIdX2UKGgGaAloD0MIQNtq1pkZZECUhpRSlGgVTegDaBZHQJLIajWTX8R1fZQoaAZoCWgPQwglB+xqcpNgQJSGlFKUaBVN6ANoFkdAksonpGFzuHV9lChoBmgJaA9DCDtu+N30YmNAlIaUUpRoFU3oA2gWR0CSzSeUILPVdX2UKGgGaAloD0MILlOT4A1xJUCUhpRSlGgVS/doFkdAks+3l8w6AHV9lChoBmgJaA9DCFosRfKV6mNAlIaUUpRoFU3oA2gWR0CS3Fz90ihWdX2UKGgGaAloD0MIFymUhS+bZECUhpRSlGgVTegDaBZHQJLeNIbwSap1fZQoaAZoCWgPQwjDSgUVVdFgQJSGlFKUaBVN6ANoFkdAkuGQLmZE2HV9lChoBmgJaA9DCB08E5okhmJAlIaUUpRoFU3oA2gWR0CS44TRYzSDdX2UKGgGaAloD0MIK8B3mzcjZ0CUhpRSlGgVTegDaBZHQJLtsKNQ0oB1fZQoaAZoCWgPQwhqvHSTmM5jQJSGlFKUaBVN6ANoFkdAkvAyprDZUXV9lChoBmgJaA9DCF+Wdmou7GFAlIaUUpRoFU3oA2gWR0CS8LKfnOjZdX2UKGgGaAloD0MIF7t9VpnKZECUhpRSlGgVTegDaBZHQJMGisV+I/J1fZQoaAZoCWgPQwjk9zb92XFpQJSGlFKUaBVN6ANoFkdAkwuEF4cFQnV9lChoBmgJaA9DCDV9dsD1Q2BAlIaUUpRoFU3oA2gWR0CTDDtVJcxCdX2UKGgGaAloD0MIxf6ye/L9Y0CUhpRSlGgVTegDaBZHQJMTJG/etS11fZQoaAZoCWgPQwiiJCTStj1iQJSGlFKUaBVN6ANoFkdAkxOVj/dZaHV9lChoBmgJaA9DCOGyCpsBCmFAlIaUUpRoFU3oA2gWR0CTFwrN4Z/DdX2UKGgGaAloD0MIJTyh1x8AZECUhpRSlGgVTegDaBZHQJMYln7Hhjx1fZQoaAZoCWgPQwidK0oJwSNyQJSGlFKUaBVNlAFoFkdAkxsHwPRRdnV9lChoBmgJaA9DCNF2TN2VWGFAlIaUUpRoFU3oA2gWR0CTGzkYGdI5dX2UKGgGaAloD0MIGHrE6LnfW0CUhpRSlGgVTegDaBZHQJMdXEgntv51fZQoaAZoCWgPQwgNGvonuP1lQJSGlFKUaBVN6ANoFkdAkyf8+iaiK3V9lChoBmgJaA9DCMhESrN5XGJAlIaUUpRoFU3oA2gWR0CTKcMglnh9dX2UKGgGaAloD0MIrIvbaICdZUCUhpRSlGgVTegDaBZHQJMuOc+aBqd1fZQoaAZoCWgPQwirzmqBPbRgQJSGlFKUaBVN6ANoFkdAkzDs+zMRpXV9lChoBmgJaA9DCPAxWHEqLXBAlIaUUpRoFU1GAWgWR0CTMaXiBGx2dX2UKGgGaAloD0MIDmWoiqlAYUCUhpRSlGgVTegDaBZHQJM7BuHerMl1fZQoaAZoCWgPQwjnFyXor5lgQJSGlFKUaBVN6ANoFkdAkz2PvKEFn3V9lChoBmgJaA9DCLAD54yoOmNAlIaUUpRoFU3oA2gWR0CTU9M3qAz6dX2UKGgGaAloD0MIjlw3pbzpYUCUhpRSlGgVTegDaBZHQJNZKOinHed1fZQoaAZoCWgPQwi4XP3YpHNnQJSGlFKUaBVN6ANoFkdAk1noZ2pyZXV9lChoBmgJaA9DCJD4FWu4cnFAlIaUUpRoFU1GA2gWR0CTW56mfoRqdX2UKGgGaAloD0MIOGkaFM29b0CUhpRSlGgVTckBaBZHQJNc3cGkep51fZQoaAZoCWgPQwj/BYIAGS5dQJSGlFKUaBVN6ANoFkdAk2CTe9Ba93V9lChoBmgJaA9DCE/OUNxxlWFAlIaUUpRoFU3oA2gWR0CTYQUSZjQRdX2UKGgGaAloD0MICvMeZxrjYkCUhpRSlGgVTegDaBZHQJNl/noxHoZ1fZQoaAZoCWgPQwiRQ8TNqRxuQJSGlFKUaBVNxQFoFkdAk2iFOO8013V9lChoBmgJaA9DCK+YEd4ezWBAlIaUUpRoFU3oA2gWR0CTaLL9MsYmdX2UKGgGaAloD0MIUpj3ONPBYkCUhpRSlGgVTegDaBZHQJNo6pxWDHx1fZQoaAZoCWgPQwjUEFX4861wQJSGlFKUaBVNqANoFkdAk3WjC+De03V9lChoBmgJaA9DCH4bYrzmBWFAlIaUUpRoFU3oA2gWR0CTd/ibUgB+dX2UKGgGaAloD0MIIxYx7DANYECUhpRSlGgVTegDaBZHQJN/TkbPyCp1fZQoaAZoCWgPQwgHmPkO/rdgQJSGlFKUaBVN6ANoFkdAk3/c2rGR3nV9lChoBmgJaA9DCBPU8C2sYGtAlIaUUpRoFU2AA2gWR0CTiVcoYvWZdX2UKGgGaAloD0MIBARz9PhQbkCUhpRSlGgVTWICaBZHQJOLuCrcTJ11fZQoaAZoCWgPQwgIkncOZfRdQJSGlFKUaBVN6ANoFkdAk40gxN7BwnV9lChoBmgJaA9DCGUbuAN1XW9AlIaUUpRoFU2cA2gWR0CTqIltCRfXdX2UKGgGaAloD0MIHJWbqKXuYkCUhpRSlGgVTegDaBZHQJOpImXw9aF1fZQoaAZoCWgPQwjf/lw0ZFhcQJSGlFKUaBVN6ANoFkdAk6nV/tpmE3V9lChoBmgJaA9DCL2nctrT52JAlIaUUpRoFU3oA2gWR0CTq4850bLmdX2UKGgGaAloD0MIWFhwP+B0ckCUhpRSlGgVTTUCaBZHQJOuNL127nR1fZQoaAZoCWgPQwhLAP4p1WBiQJSGlFKUaBVN6ANoFkdAk7BmLYPGyXV9lChoBmgJaA9DCJhNgGF52WZAlIaUUpRoFU3oA2gWR0CTsNWpqASWdX2UKGgGaAloD0MIZ9e9FQlbbkCUhpRSlGgVTXECaBZHQJO3sbWEsat1fZQoaAZoCWgPQwhMw/ARsaxmQJSGlFKUaBVN6ANoFkdAk7gmmYSg5HV9lChoBmgJaA9DCGDLK9dbpWZAlIaUUpRoFU3oA2gWR0CTuFQmNR3vdX2UKGgGaAloD0MI2GX4T7f2Y0CUhpRSlGgVTegDaBZHQJO4jDcdo391fZQoaAZoCWgPQwjbbRea68BmQJSGlFKUaBVN6ANoFkdAk8SA2VE/jnV9lChoBmgJaA9DCL5ojxdSOnBAlIaUUpRoFU2lA2gWR0CTyscXFcY7dX2UKGgGaAloD0MIeCefHttCcUCUhpRSlGgVTcYCaBZHQJPSwzch1T11fZQoaAZoCWgPQwjnG9E9q7hxQJSGlFKUaBVNawJoFkdAk9OMuSOinHV9lChoBmgJaA9DCGQ9tfrqWm9AlIaUUpRoFU1zA2gWR0CT1dZqmCRPdX2UKGgGaAloD0MIb7n6sQk/cECUhpRSlGgVTYoDaBZHQJPV1rj5sTF1fZQoaAZoCWgPQwi6FFeVfWxxQJSGlFKUaBVNggJoFkdAk9fLdrO7hHV9lChoBmgJaA9DCD9uv3yySmBAlIaUUpRoFU3oA2gWR0CT2QPQOWjXdX2UKGgGaAloD0MIAOXv3lHZcECUhpRSlGgVTSgCaBZHQJPakU34sVd1fZQoaAZoCWgPQwgGY0Si0HpsQJSGlFKUaBVNogNoFkdAk+AIZ62OQ3V9lChoBmgJaA9DCM07TtERgGNAlIaUUpRoFU3oA2gWR0CT9so4MnZ1dX2UKGgGaAloD0MI0GT/PA3VXUCUhpRSlGgVTegDaBZHQJP5F+F10T11fZQoaAZoCWgPQwhpNo/D4LJsQJSGlFKUaBVN9gFoFkdAk/uJLmITG3V9lChoBmgJaA9DCKd5xyk6IW5AlIaUUpRoFU2DAWgWR0CT/Dao/A0sdX2UKGgGaAloD0MICme3lsnAZECUhpRSlGgVTegDaBZHQJP+KE9Mbm51fZQoaAZoCWgPQwiGAraD0WRwQJSGlFKUaBVNrwNoFkdAlAMu8CgbqHV9lChoBmgJaA9DCI/C9ShcBV5AlIaUUpRoFU3oA2gWR0CUBdFrl/6PdX2UKGgGaAloD0MIMjhKXh0pZUCUhpRSlGgVTegDaBZHQJQGRRQ79yd1fZQoaAZoCWgPQwi4sdmRagpwQJSGlFKUaBVNVgNoFkdAlAokTURWcXV9lChoBmgJaA9DCMyaWOBrvXBAlIaUUpRoFU1EAmgWR0CUCx63y7PIdX2UKGgGaAloD0MILiC0Hj6DbkCUhpRSlGgVTUIBaBZHQJQLLxqfvnd1fZQoaAZoCWgPQwgmxjL9UptxQJSGlFKUaBVNzwJoFkdAlBBwx33Yc3V9lChoBmgJaA9DCDPABdmyP3JAlIaUUpRoFU2rAWgWR0CUEuHRCx/vdX2UKGgGaAloD0MIXkiHhzDGLkCUhpRSlGgVS/RoFkdAlBcDKLbYb3V9lChoBmgJaA9DCB/bMuCsunJAlIaUUpRoFU3uAWgWR0CUFzs052hadX2UKGgGaAloD0MIPfNy2D3hcECUhpRSlGgVTZMDaBZHQJQYaoegctJ1fZQoaAZoCWgPQwjlKEAUTONtQJSGlFKUaBVNmAJoFkdAlBr77TDwY3V9lChoBmgJaA9DCHLfap04vnJAlIaUUpRoFU2zAWgWR0CUHYLDye7MdX2UKGgGaAloD0MIO1J95xcBbkCUhpRSlGgVTcUDaBZHQJQdrOiWVu91fZQoaAZoCWgPQwih2Aqa1khwQJSGlFKUaBVNRwJoFkdAlB3TJIUah3V9lChoBmgJaA9DCOXUzjC18HFAlIaUUpRoFU2dAWgWR0CUIMr8zhxYdX2UKGgGaAloD0MIp6/naxY7cUCUhpRSlGgVTTwCaBZHQJQhlHf/FR51fZQoaAZoCWgPQwhfmiLAaX9iQJSGlFKUaBVN6ANoFkdAlCIUtdzGP3V9lChoBmgJaA9DCKDctu9R02ZAlIaUUpRoFU3oA2gWR0CUI3XvH93sdX2UKGgGaAloD0MIcEBLVzC3ZUCUhpRSlGgVTegDaBZHQJQo9rM1TBJ1fZQoaAZoCWgPQwhFEVK3s+5yQJSGlFKUaBVNfQFoFkdAlCp57XxvvXVlLg=="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 248,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dbd5076a060078d393c5d9f71d01e309312b95c9bcbd206b21476caf0ac00a7f
3
+ size 87865
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6db9dd1230705b308b3cc34c8b5fcecf4c738a4e91e6ecfd88219542046fadfd
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.6.0
4
+ PyTorch: 1.12.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (193 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 263.3274289792022, "std_reward": 18.430890877136896, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-08-12T15:57:46.625623"}