--- license: mit license_link: https://huggingface.co./microsoft/Phi-3.5-MoE-instruct/resolve/main/LICENSE language: - multilingual pipeline_tag: text-generation tags: - nlp - code widget: - messages: - role: user content: Can you provide ways to eat combinations of bananas and dragonfruits? library_name: transformers --- > [!IMPORTANT] > This repository is a quantized version of the original model [`microsoft/Phi-3.5-MoE-instruct`](https://huggingface.co./microsoft/Phi-3.5-MoE-instruct) which is the FP16 half-precision official version released by Microsoft. ## Model Summary Phi-3.5-MoE is a lightweight, state-of-the-art open model built upon datasets used for Phi-3 - synthetic data and filtered publicly available documents - with a focus on very high-quality, reasoning dense data. The model supports multilingual and comes with 128K context length (in tokens). The model underwent a rigorous enhancement process, incorporating supervised fine-tuning, proximal policy optimization, and direct preference optimization to ensure precise instruction adherence and robust safety measures. 🏡 [Phi-3 Portal](https://azure.microsoft.com/en-us/products/phi-3)
📰 [Phi-3 Microsoft Blog](https://aka.ms/phi3.5-techblog)
📖 [Phi-3 Technical Report](https://arxiv.org/abs/2404.14219)
👩‍🍳 [Phi-3 Cookbook](https://github.com/microsoft/Phi-3CookBook)
🖥️ [Try It](https://aka.ms/try-phi3.5moe)
MoE references: 📜[Phi-3.5-MoE Blog](https://techcommunity.microsoft.com/t5/ai-azure-ai-services-blog/announcing-the-availability-of-phi-3-5-moe-in-azure-ai-studio/ba-p/4256278) | 😁[GRIN MoE](https://huggingface.co./microsoft/GRIN-MoE) **Phi-3.5**: [[mini-instruct]](https://huggingface.co./microsoft/Phi-3.5-mini-instruct); [[MoE-instruct]](https://huggingface.co./microsoft/Phi-3.5-MoE-instruct) ; [[vision-instruct]](https://huggingface.co./microsoft/Phi-3.5-vision-instruct) ## Running 🏃 ### TGI ```bash model=danieldk/Phi-3.5-MoE-instruct-AWQ-INT4 volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data \ ghcr.io/huggingface/text-generation-inference:2.4.0 \ --model-id $model --num-shard 2 ``` ## Quantization Reproduction Soon (need to upstream an AutoAWQ patch).