File size: 1,613 Bytes
eea4b2a
 
681e6f9
eea4b2a
 
 
 
 
 
 
 
 
 
 
 
 
 
9037061
eea4b2a
 
 
9be941a
eea4b2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9037061
 
 
 
eea4b2a
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
---
license: apache-2.0
inference: false
tags:
- generated_from_trainer
model-index:
- name: distilbert-base-uncased-finetuned-H2Physics
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilbert-base-uncased-finetuned-H2Physics

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co./distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8149

## Model description

This model was pretrained on my Anki cards for the H2 GCE A Levels (Singapore) syllabus, in the hopes of making it a Question and Answer chatbot. 
## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log        | 1.0   | 20   | 3.4296          |
| No log        | 2.0   | 40   | 2.0993          |
| No log        | 3.0   | 60   | 1.1277          |
| No log        | 4.0   | 80   | 0.8149          |


### Framework versions

- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.10.0
- Tokenizers 0.13.2