--- language: - lt license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: whisper-lt-finetune results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: 'null' split: None args: 'config: lt, split: test' metrics: - name: Wer type: wer value: 28.115930505307517 --- # whisper-lt-finetune This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co./openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3634 - Wer: 28.1159 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.399 | 0.9 | 500 | 0.4877 | 49.1790 | | 0.1925 | 1.8 | 1000 | 0.4019 | 39.1325 | | 0.0734 | 2.7 | 1500 | 0.3989 | 37.5581 | | 0.0324 | 3.6 | 2000 | 0.3947 | 32.9662 | | 0.0053 | 5.4 | 3000 | 0.3708 | 29.2808 | | 0.0007 | 7.19 | 4000 | 0.3634 | 28.1159 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2