Dan Friedman
commited on
Commit
•
f9cfa84
1
Parent(s):
73ae2a9
Add autoencoder.py
Browse files- autoencoder.py +882 -0
autoencoder.py
ADDED
@@ -0,0 +1,882 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from torch.distributions import Independent, Normal, MultivariateNormal
|
6 |
+
import torch.nn.functional as F
|
7 |
+
|
8 |
+
from transformers import AutoModel, AutoModelForCausalLM
|
9 |
+
from tqdm import tqdm
|
10 |
+
from tqdm.notebook import tqdm as tqdm_notebook
|
11 |
+
|
12 |
+
|
13 |
+
class Res(nn.Module):
|
14 |
+
def __init__(self, H):
|
15 |
+
super().__init__()
|
16 |
+
self.u1 = nn.Linear(H, H)
|
17 |
+
self.u2 = nn.Linear(H, H)
|
18 |
+
|
19 |
+
self.v1 = nn.Linear(H, H)
|
20 |
+
self.v2 = nn.Linear(H, H)
|
21 |
+
self.w = nn.Linear(H, H)
|
22 |
+
|
23 |
+
def forward(self, x):
|
24 |
+
x = self.w(x)
|
25 |
+
x = x + torch.relu(self.v1(torch.relu(self.u1(x))))
|
26 |
+
return x + torch.relu(self.v2(torch.relu(self.u2(x))))
|
27 |
+
|
28 |
+
|
29 |
+
class MLP(nn.Module):
|
30 |
+
def __init__(self, H, out=None):
|
31 |
+
super().__init__()
|
32 |
+
out = out or H
|
33 |
+
self.mlp = nn.Sequential(
|
34 |
+
nn.Linear(H, H),
|
35 |
+
nn.ReLU(),
|
36 |
+
nn.Linear(H, H),
|
37 |
+
nn.ReLU(),
|
38 |
+
nn.Linear(H, out),
|
39 |
+
)
|
40 |
+
|
41 |
+
def forward(self, x):
|
42 |
+
return self.mlp(x)
|
43 |
+
|
44 |
+
|
45 |
+
class Encoder(nn.Module):
|
46 |
+
def __init__(self, tokenizer, model_name_or_path="roberta-base", **kwargs):
|
47 |
+
super().__init__()
|
48 |
+
self.encoder = AutoModel.from_pretrained(model_name_or_path)
|
49 |
+
self.encoder.resize_token_embeddings(len(tokenizer))
|
50 |
+
self.dim = self.encoder.config.hidden_size
|
51 |
+
|
52 |
+
@property
|
53 |
+
def device(self):
|
54 |
+
return self.encoder.device
|
55 |
+
|
56 |
+
def forward(self, **inputs):
|
57 |
+
model_inputs = {
|
58 |
+
k: inputs[k].to(self.device)
|
59 |
+
for k in ("input_ids", "attention_mask")
|
60 |
+
}
|
61 |
+
if inputs.get("token_type_ids", None) is not None:
|
62 |
+
model_inputs["token_type_ids"] = inputs["token_type_ids"].to(
|
63 |
+
self.device
|
64 |
+
)
|
65 |
+
out = self.encoder(**model_inputs)
|
66 |
+
emb = out.last_hidden_state[:, 0]
|
67 |
+
return emb
|
68 |
+
|
69 |
+
|
70 |
+
class PrefixDecoder(nn.Module):
|
71 |
+
def __init__(
|
72 |
+
self,
|
73 |
+
tokenizer,
|
74 |
+
model_name_or_path="gpt2",
|
75 |
+
prefix_length=1,
|
76 |
+
ffn="res",
|
77 |
+
**kwargs,
|
78 |
+
):
|
79 |
+
super().__init__()
|
80 |
+
self.decoder = AutoModelForCausalLM.from_pretrained(model_name_or_path)
|
81 |
+
self.hidden_dim = D = self.decoder.config.n_embd
|
82 |
+
self.num_layers = L = self.decoder.config.n_layer
|
83 |
+
self.num_heads = H = self.decoder.config.n_head
|
84 |
+
self.prefix_length = K = prefix_length
|
85 |
+
self.lin1 = nn.Linear(D, D * 2)
|
86 |
+
self.z_size = D * L * K * 2
|
87 |
+
if ffn == "res":
|
88 |
+
self.mlp = nn.Sequential(Res(D), nn.Linear(D, self.z_size))
|
89 |
+
else:
|
90 |
+
self.mlp = MLP(D, self.z_size)
|
91 |
+
|
92 |
+
def get_prefix(self, z):
|
93 |
+
B = z.shape[0]
|
94 |
+
D, L, H, K = (
|
95 |
+
self.hidden_dim,
|
96 |
+
self.num_layers,
|
97 |
+
self.num_heads,
|
98 |
+
self.prefix_length,
|
99 |
+
)
|
100 |
+
z_up = self.mlp(z).reshape(B, H, K, D // H, L, 2)
|
101 |
+
keys, vals = (t.squeeze(-1) for t in z_up.chunk(2, dim=-1))
|
102 |
+
layers = tuple(
|
103 |
+
[
|
104 |
+
(k.squeeze(-1), v.squeeze(-1))
|
105 |
+
for k, v in zip(keys.chunk(L, -1), vals.chunk(L, -1))
|
106 |
+
]
|
107 |
+
)
|
108 |
+
return layers
|
109 |
+
|
110 |
+
def forward(self, z, **inputs):
|
111 |
+
B = z.shape[0]
|
112 |
+
D, L, H, K = (
|
113 |
+
self.hidden_dim,
|
114 |
+
self.num_layers,
|
115 |
+
self.num_heads,
|
116 |
+
self.prefix_length,
|
117 |
+
)
|
118 |
+
z_up = self.mlp(z).reshape(B, H, K, D // H, L, 2)
|
119 |
+
keys, vals = (t.squeeze(-1) for t in z_up.chunk(2, dim=-1))
|
120 |
+
layers = tuple(
|
121 |
+
[
|
122 |
+
(k.squeeze(-1), v.squeeze(-1))
|
123 |
+
for k, v in zip(keys.chunk(L, -1), vals.chunk(L, -1))
|
124 |
+
]
|
125 |
+
)
|
126 |
+
input_ids = inputs["input_ids"].to(z.device)
|
127 |
+
attention_mask = inputs["attention_mask"].to(z.device)
|
128 |
+
attention_mask = torch.cat(
|
129 |
+
[torch.ones(B, K, dtype=bool, device=z.device), attention_mask],
|
130 |
+
1,
|
131 |
+
)
|
132 |
+
out = self.decoder(
|
133 |
+
input_ids=input_ids,
|
134 |
+
attention_mask=attention_mask,
|
135 |
+
past_key_values=layers,
|
136 |
+
)
|
137 |
+
return out
|
138 |
+
|
139 |
+
|
140 |
+
def get_inputs(
|
141 |
+
inputs, prefix, keys=["input_ids", "attention_mask", "token_type_ids"]
|
142 |
+
):
|
143 |
+
return {k: inputs.get(f"{prefix}{k}", None) for k in keys}
|
144 |
+
|
145 |
+
|
146 |
+
class VAE(nn.Module):
|
147 |
+
def __init__(self, encoder, decoder, beta=1.0, do_sample=True, **kwargs):
|
148 |
+
super().__init__()
|
149 |
+
self.encoder = encoder
|
150 |
+
self.decoder = decoder
|
151 |
+
self.beta = beta
|
152 |
+
D = decoder.hidden_dim
|
153 |
+
self.lin = nn.Linear(D, D * 2)
|
154 |
+
self.do_sample = do_sample
|
155 |
+
|
156 |
+
@property
|
157 |
+
def device(self):
|
158 |
+
return self.encoder.device
|
159 |
+
|
160 |
+
def get_z(self, sample=True, **inputs):
|
161 |
+
enc = self.encoder(**get_inputs(inputs, "enc_"))
|
162 |
+
B, D = enc.shape
|
163 |
+
mu, logvar = (
|
164 |
+
t.squeeze(-1) for t in self.lin(enc).view(B, D, 2).chunk(2, -1)
|
165 |
+
)
|
166 |
+
qz = Normal(mu, logvar.exp())
|
167 |
+
pz = Normal(torch.zeros_like(mu[0]), torch.ones_like(mu[0]))
|
168 |
+
kl = torch.distributions.kl_divergence(qz, pz).sum(-1)
|
169 |
+
if sample:
|
170 |
+
z = qz.rsample()
|
171 |
+
else:
|
172 |
+
z = mu
|
173 |
+
return z, kl
|
174 |
+
|
175 |
+
def forward(self, **inputs):
|
176 |
+
z, kl = self.get_z(sample=self.do_sample, **inputs)
|
177 |
+
out = self.decoder(z, **get_inputs(inputs, "dec_"))
|
178 |
+
out["kl"] = kl
|
179 |
+
return out
|
180 |
+
|
181 |
+
|
182 |
+
class AAE(nn.Module):
|
183 |
+
def __init__(self, encoder, decoder, _lambda=1.0, word_drop=None, **kwargs):
|
184 |
+
super().__init__()
|
185 |
+
self.encoder = encoder
|
186 |
+
self.decoder = decoder
|
187 |
+
self._lambda = _lambda
|
188 |
+
dim = decoder.hidden_dim
|
189 |
+
self.D = nn.Sequential(
|
190 |
+
nn.Linear(dim, dim), nn.ReLU(), nn.Linear(dim, 1), nn.Sigmoid()
|
191 |
+
)
|
192 |
+
self.word_drop = word_drop
|
193 |
+
|
194 |
+
@property
|
195 |
+
def device(self):
|
196 |
+
return self.encoder.device
|
197 |
+
|
198 |
+
def get_z(self, **inputs):
|
199 |
+
if self.word_drop is not None:
|
200 |
+
m = inputs["enc_attention_mask"]
|
201 |
+
b = torch.rand_like(m.float()) > self.word_drop
|
202 |
+
inputs["enc_attention_mask"] = m & b
|
203 |
+
return self.encoder(**get_inputs(inputs, "enc_")), None
|
204 |
+
|
205 |
+
def loss_adv(self, z):
|
206 |
+
# https://github.com/shentianxiao/text-autoencoders
|
207 |
+
zn = torch.randn_like(z)
|
208 |
+
zeros = torch.zeros(len(z), 1, device=z.device)
|
209 |
+
ones = torch.ones(len(z), 1, device=z.device)
|
210 |
+
loss_d = F.binary_cross_entropy(
|
211 |
+
self.D(z.detach()), zeros, reduction="none"
|
212 |
+
) + F.binary_cross_entropy(self.D(zn), ones, reduction="none")
|
213 |
+
adv = F.binary_cross_entropy(self.D(z), ones, reduction="none")
|
214 |
+
return loss_d, adv
|
215 |
+
|
216 |
+
def forward(self, **inputs):
|
217 |
+
z, _ = self.get_z(**inputs)
|
218 |
+
out = self.decoder(z, **get_inputs(inputs, "dec_"))
|
219 |
+
b, n, _ = out["logits"].shape
|
220 |
+
log_probs = out["logits"].log_softmax(-1)
|
221 |
+
log_probs = torch.gather(
|
222 |
+
log_probs[:, :-1],
|
223 |
+
-1,
|
224 |
+
inputs["dec_input_ids"][:, 1:].unsqueeze(-1),
|
225 |
+
).squeeze(-1)
|
226 |
+
log_probs = log_probs.masked_fill(
|
227 |
+
~inputs["dec_attention_mask"][:, 1:], 0
|
228 |
+
)
|
229 |
+
out["l_rec"] = -log_probs.sum(-1)
|
230 |
+
out["loss_d"], out["adv"] = self.loss_adv(z)
|
231 |
+
return out
|
232 |
+
|
233 |
+
|
234 |
+
class AE(nn.Module):
|
235 |
+
def __init__(self, encoder, decoder, **kwargs):
|
236 |
+
super().__init__()
|
237 |
+
self.encoder = encoder
|
238 |
+
self.decoder = decoder
|
239 |
+
dim = decoder.hidden_dim
|
240 |
+
self.D = nn.Sequential(
|
241 |
+
nn.Linear(dim, dim), nn.ReLU(), nn.Linear(dim, 1), nn.Sigmoid()
|
242 |
+
)
|
243 |
+
|
244 |
+
@property
|
245 |
+
def device(self):
|
246 |
+
return self.encoder.device
|
247 |
+
|
248 |
+
def get_z(self, **inputs):
|
249 |
+
return self.encoder(**get_inputs(inputs, "enc_")), None
|
250 |
+
|
251 |
+
def step(self, **inputs):
|
252 |
+
z, _ = self.get_z(**inputs)
|
253 |
+
out = self.decoder(z, **get_inputs(inputs, "dec_"))
|
254 |
+
b, n, _ = out["logits"].shape
|
255 |
+
log_probs = out["logits"].log_softmax(-1)
|
256 |
+
log_probs = torch.gather(
|
257 |
+
log_probs[:, :-1],
|
258 |
+
-1,
|
259 |
+
inputs["dec_input_ids"][:, 1:].unsqueeze(-1),
|
260 |
+
).squeeze(-1)
|
261 |
+
log_probs = log_probs.masked_fill(
|
262 |
+
~inputs["dec_attention_mask"][:, 1:], 0
|
263 |
+
)
|
264 |
+
out["loss_r"] = -log_probs.sum(-1)
|
265 |
+
return z, out
|
266 |
+
|
267 |
+
def forward(self, **inputs):
|
268 |
+
z, out = self.step(**inputs)
|
269 |
+
out["loss_c"] = torch.zeros_like(out["loss_r"])
|
270 |
+
return out
|
271 |
+
|
272 |
+
|
273 |
+
class CDAE(nn.Module):
|
274 |
+
def __init__(
|
275 |
+
self, encoder, decoder, _lambda=1.0, word_drop=None, tau=1.0, **kwargs
|
276 |
+
):
|
277 |
+
super().__init__()
|
278 |
+
self.encoder = encoder
|
279 |
+
self.decoder = decoder
|
280 |
+
self._lambda = _lambda
|
281 |
+
dim = decoder.hidden_dim
|
282 |
+
self.D = nn.Sequential(
|
283 |
+
nn.Linear(dim, dim), nn.ReLU(), nn.Linear(dim, 1), nn.Sigmoid()
|
284 |
+
)
|
285 |
+
self.word_drop = word_drop
|
286 |
+
self.tau = tau
|
287 |
+
|
288 |
+
@property
|
289 |
+
def device(self):
|
290 |
+
return self.encoder.device
|
291 |
+
|
292 |
+
def do_mask(self, **inputs):
|
293 |
+
m = inputs["enc_attention_mask"]
|
294 |
+
b = torch.rand_like(m.float()) > self.word_drop
|
295 |
+
inputs["enc_attention_mask"] = m & b
|
296 |
+
|
297 |
+
B, N = inputs["dec_attention_mask"].shape
|
298 |
+
_, M = m.shape
|
299 |
+
m2 = inputs["dec_attention_mask"]
|
300 |
+
if N <= M:
|
301 |
+
b2 = b[:, :N]
|
302 |
+
else:
|
303 |
+
b_ = torch.rand((B, N - M), device=b.device) > self.word_drop
|
304 |
+
b2 = torch.cat([b, b_], -1)
|
305 |
+
inputs["dec_attention_mask"] = m2 & b2
|
306 |
+
|
307 |
+
def get_z(self, **inputs):
|
308 |
+
return self.encoder(**get_inputs(inputs, "enc_")), None
|
309 |
+
|
310 |
+
def step(self, **inputs):
|
311 |
+
z, _ = self.get_z(**inputs)
|
312 |
+
out = self.decoder(z, **get_inputs(inputs, "dec_"))
|
313 |
+
b, n, _ = out["logits"].shape
|
314 |
+
log_probs = out["logits"].log_softmax(-1)
|
315 |
+
log_probs = torch.gather(
|
316 |
+
log_probs[:, :-1],
|
317 |
+
-1,
|
318 |
+
inputs["dec_input_ids"][:, 1:].unsqueeze(-1),
|
319 |
+
).squeeze(-1)
|
320 |
+
log_probs = log_probs.masked_fill(
|
321 |
+
~inputs["dec_attention_mask"][:, 1:], 0
|
322 |
+
)
|
323 |
+
out["loss_r"] = -log_probs.sum(-1)
|
324 |
+
return z, out
|
325 |
+
|
326 |
+
def loss_c(self, z, z2):
|
327 |
+
scores = -(torch.cdist(z, z2) ** 2)
|
328 |
+
log_probs = (scores / self.tau).log_softmax(-1)
|
329 |
+
loss = -torch.diagonal(log_probs)
|
330 |
+
return loss
|
331 |
+
|
332 |
+
def forward(self, **inputs):
|
333 |
+
z, out = self.step(**inputs)
|
334 |
+
self.do_mask(**inputs)
|
335 |
+
z_, out_ = self.step(**inputs)
|
336 |
+
out["loss_r"] = out["loss_r"] + out_["loss_r"]
|
337 |
+
out["loss_c"] = self.loss_c(z, z_)
|
338 |
+
return out
|
339 |
+
|
340 |
+
|
341 |
+
def run_aae_epoch(
|
342 |
+
model,
|
343 |
+
batches,
|
344 |
+
opt,
|
345 |
+
optD,
|
346 |
+
num_samples=1,
|
347 |
+
lambda_adv=1.0,
|
348 |
+
desc="",
|
349 |
+
notebook=True,
|
350 |
+
):
|
351 |
+
losses = {k: [] for k in ("l_rec", "adv", "loss_d")}
|
352 |
+
t = (
|
353 |
+
tqdm_notebook(batches, desc=desc)
|
354 |
+
if notebook
|
355 |
+
else tqdm(batches, desc=desc)
|
356 |
+
)
|
357 |
+
for batch in t:
|
358 |
+
model_inputs = {
|
359 |
+
k: v.to(model.device)
|
360 |
+
for k, v in batch.items()
|
361 |
+
if type(v) == torch.Tensor
|
362 |
+
}
|
363 |
+
out = model(**model_inputs)
|
364 |
+
loss = (out["l_rec"] + lambda_adv * out["adv"]).sum()
|
365 |
+
opt.zero_grad()
|
366 |
+
loss.backward()
|
367 |
+
opt.step()
|
368 |
+
|
369 |
+
loss_d = out["loss_d"].sum()
|
370 |
+
optD.zero_grad()
|
371 |
+
loss_d.backward()
|
372 |
+
optD.step()
|
373 |
+
|
374 |
+
d = {}
|
375 |
+
for k in ("l_rec", "adv", "loss_d"):
|
376 |
+
d[k] = out[k].mean().item()
|
377 |
+
losses[k].append(out[k].detach().cpu().numpy())
|
378 |
+
t.set_postfix(d)
|
379 |
+
return {k: np.concatenate(v, 0) for k, v in losses.items()}
|
380 |
+
|
381 |
+
|
382 |
+
class GAE(nn.Module):
|
383 |
+
def __init__(self, encoder, decoder, tau=0.05, **kwargs):
|
384 |
+
super().__init__()
|
385 |
+
self.encoder = encoder
|
386 |
+
self.decoder = decoder
|
387 |
+
self.tau = tau
|
388 |
+
|
389 |
+
@property
|
390 |
+
def device(self):
|
391 |
+
return self.encoder.device
|
392 |
+
|
393 |
+
def get_z(self, **inputs):
|
394 |
+
return self.encoder(**get_inputs(inputs, "enc_")), None
|
395 |
+
|
396 |
+
def loss_c(self, z, z2):
|
397 |
+
scores = F.normalize(z, dim=-1) @ F.normalize(z2, dim=-1).T
|
398 |
+
log_probs = (scores / self.tau).log_softmax(-1)
|
399 |
+
loss = -torch.diagonal(log_probs)
|
400 |
+
return loss
|
401 |
+
|
402 |
+
def forward(self, **inputs):
|
403 |
+
z, _ = self.get_z(**inputs)
|
404 |
+
out = self.decoder(z, **get_inputs(inputs, "dec_"))
|
405 |
+
b, n, _ = out["logits"].shape
|
406 |
+
log_probs = out["logits"].log_softmax(-1)
|
407 |
+
log_probs = torch.gather(
|
408 |
+
log_probs[:, :-1],
|
409 |
+
-1,
|
410 |
+
inputs["dec_input_ids"][:, 1:].unsqueeze(-1),
|
411 |
+
).squeeze(-1)
|
412 |
+
log_probs = log_probs.masked_fill(
|
413 |
+
~inputs["dec_attention_mask"][:, 1:], 0
|
414 |
+
)
|
415 |
+
out["loss_r"] = -log_probs.sum(-1)
|
416 |
+
out["loss_c"] = self.loss_c(z)
|
417 |
+
return out
|
418 |
+
|
419 |
+
|
420 |
+
class CAE(nn.Module):
|
421 |
+
def __init__(self, encoder, decoder, tau=0.05, **kwargs):
|
422 |
+
super().__init__()
|
423 |
+
self.encoder = encoder
|
424 |
+
self.decoder = decoder
|
425 |
+
self.tau = tau
|
426 |
+
|
427 |
+
@property
|
428 |
+
def device(self):
|
429 |
+
return self.encoder.device
|
430 |
+
|
431 |
+
def get_z(self, **inputs):
|
432 |
+
return self.encoder(**get_inputs(inputs, "enc_")), None
|
433 |
+
|
434 |
+
def loss_c(self, z, z2):
|
435 |
+
scores = F.normalize(z, dim=-1) @ F.normalize(z2, dim=-1).T
|
436 |
+
log_probs = (scores / self.tau).log_softmax(-1)
|
437 |
+
loss = -torch.diagonal(log_probs)
|
438 |
+
return loss
|
439 |
+
|
440 |
+
def forward(self, **inputs):
|
441 |
+
z, _ = self.get_z(**inputs)
|
442 |
+
with torch.no_grad():
|
443 |
+
z2, _ = self.get_z(**inputs)
|
444 |
+
out = self.decoder(z, **get_inputs(inputs, "dec_"))
|
445 |
+
b, n, _ = out["logits"].shape
|
446 |
+
log_probs = out["logits"].log_softmax(-1)
|
447 |
+
log_probs = torch.gather(
|
448 |
+
log_probs[:, :-1],
|
449 |
+
-1,
|
450 |
+
inputs["dec_input_ids"][:, 1:].unsqueeze(-1),
|
451 |
+
).squeeze(-1)
|
452 |
+
log_probs = log_probs.masked_fill(
|
453 |
+
~inputs["dec_attention_mask"][:, 1:], 0
|
454 |
+
)
|
455 |
+
out["loss_r"] = -log_probs.sum(-1)
|
456 |
+
out["loss_c"] = self.loss_c(z, z2)
|
457 |
+
return out
|
458 |
+
|
459 |
+
|
460 |
+
def run_cae_epoch(
|
461 |
+
model,
|
462 |
+
batches,
|
463 |
+
opt,
|
464 |
+
num_samples=1,
|
465 |
+
lambda_c=1.0,
|
466 |
+
desc="",
|
467 |
+
notebook=True,
|
468 |
+
):
|
469 |
+
losses = {k: [] for k in ("loss_r", "loss_c")}
|
470 |
+
t = (
|
471 |
+
tqdm_notebook(batches, desc=desc)
|
472 |
+
if notebook
|
473 |
+
else tqdm(batches, desc=desc)
|
474 |
+
)
|
475 |
+
model.train()
|
476 |
+
for batch in t:
|
477 |
+
model_inputs = {
|
478 |
+
k: v.to(model.device)
|
479 |
+
for k, v in batch.items()
|
480 |
+
if type(v) == torch.Tensor
|
481 |
+
}
|
482 |
+
out = model(**model_inputs)
|
483 |
+
loss = (out["loss_r"] + lambda_c * out["loss_c"]).sum()
|
484 |
+
opt.zero_grad()
|
485 |
+
loss.backward()
|
486 |
+
opt.step()
|
487 |
+
d = {}
|
488 |
+
for k in ("loss_r", "loss_c"):
|
489 |
+
d[k] = out[k].mean().item()
|
490 |
+
losses[k].append(out[k].detach().cpu().numpy())
|
491 |
+
t.set_postfix(d)
|
492 |
+
return {k: np.concatenate(v, 0) for k, v in losses.items()}
|
493 |
+
|
494 |
+
|
495 |
+
def batch_kl(l1, s1, l2=None, s2=None):
|
496 |
+
# 1/2[log |s1|/|s2| - d + tr[s2^{-1}s1] + (l2 - l1)^{\top} s2^{-1}(l2 - l1)]
|
497 |
+
return
|
498 |
+
|
499 |
+
|
500 |
+
class SubpopCondAE(nn.Module):
|
501 |
+
def __init__(
|
502 |
+
self,
|
503 |
+
encoder,
|
504 |
+
decoder,
|
505 |
+
num_labels,
|
506 |
+
sublabels=4,
|
507 |
+
tau=0.05,
|
508 |
+
disc_loss=True,
|
509 |
+
**kwargs,
|
510 |
+
):
|
511 |
+
super().__init__()
|
512 |
+
self.encoder = encoder
|
513 |
+
self.decoder = decoder
|
514 |
+
self.dim = dim = decoder.hidden_dim
|
515 |
+
self.locs = nn.Parameter(torch.randn(num_labels * sublabels, dim))
|
516 |
+
self.log_scales = nn.Parameter(torch.zeros(num_labels * sublabels, dim))
|
517 |
+
self.num_labels = num_labels
|
518 |
+
self.sublabels = sublabels
|
519 |
+
self.L = num_labels * sublabels
|
520 |
+
self.tau = tau
|
521 |
+
self.disc_loss = disc_loss
|
522 |
+
|
523 |
+
@property
|
524 |
+
def device(self):
|
525 |
+
return self.encoder.device
|
526 |
+
|
527 |
+
def get_z(self, **inputs):
|
528 |
+
return self.encoder(**get_inputs(inputs, "enc_")), None
|
529 |
+
|
530 |
+
def loss_c(self, z, **inputs):
|
531 |
+
scores = []
|
532 |
+
for i in range(self.L):
|
533 |
+
dist = Independent(
|
534 |
+
Normal(loc=self.locs[i], scale=self.log_scales[i].exp()), 1
|
535 |
+
)
|
536 |
+
scores.append(dist.log_prob(z))
|
537 |
+
B = z.shape[0]
|
538 |
+
sub_log_probs = torch.stack(scores, -1)
|
539 |
+
if self.disc_loss:
|
540 |
+
sub_log_probs = sub_log_probs.log_softmax(-1)
|
541 |
+
log_probs = sub_log_probs.view(
|
542 |
+
B, self.num_labels, self.num_sublabels
|
543 |
+
).logsumexp(-1)
|
544 |
+
loss = F.nll_loss(log_probs, inputs["label"], reduction="none")
|
545 |
+
acc = log_probs.argmax(-1) == inputs["label"]
|
546 |
+
return {
|
547 |
+
"loss_c": loss,
|
548 |
+
"log_probs": log_probs,
|
549 |
+
"sub_log_probs": sub_log_probs,
|
550 |
+
"acc": acc.float(),
|
551 |
+
}
|
552 |
+
|
553 |
+
def get_kl(self):
|
554 |
+
p = MultivariateNormal(
|
555 |
+
torch.zeros(self.dim, device=self.device),
|
556 |
+
torch.eye(self.dim, device=self.device),
|
557 |
+
)
|
558 |
+
kl = 0
|
559 |
+
for i in range(self.L):
|
560 |
+
q = MultivariateNormal(
|
561 |
+
self.locs[i], torch.diag(self.log_scales[i].exp())
|
562 |
+
)
|
563 |
+
kl += torch.distributions.kl_divergence(q, p)
|
564 |
+
return kl
|
565 |
+
|
566 |
+
def forward(self, **inputs):
|
567 |
+
z, _ = self.get_z(**inputs)
|
568 |
+
out = self.decoder(z, **get_inputs(inputs, "dec_"))
|
569 |
+
b, n, _ = out["logits"].shape
|
570 |
+
log_probs = out["logits"].log_softmax(-1)
|
571 |
+
log_probs = torch.gather(
|
572 |
+
log_probs[:, :-1],
|
573 |
+
-1,
|
574 |
+
inputs["dec_input_ids"][:, 1:].unsqueeze(-1),
|
575 |
+
).squeeze(-1)
|
576 |
+
log_probs = log_probs.masked_fill(
|
577 |
+
~inputs["dec_attention_mask"][:, 1:], 0
|
578 |
+
)
|
579 |
+
out["loss_r"] = -log_probs.sum(-1)
|
580 |
+
out_c = self.loss_c(z, **inputs)
|
581 |
+
for k, v in out_c.items():
|
582 |
+
out[k] = v
|
583 |
+
out["kl"] = self.get_kl().unsqueeze(0)
|
584 |
+
return out
|
585 |
+
|
586 |
+
|
587 |
+
def gaussian_prob_product(m1, s1, m2, s2, rho=1.0):
|
588 |
+
# s1, s2 diagonal
|
589 |
+
s1_inv = 1 / s1
|
590 |
+
s2_inv = 1 / s2
|
591 |
+
s_hat = 1 / (s1 + s2)
|
592 |
+
m_hat = s1_inv * s1 + s2_inv * s2
|
593 |
+
dim = m1.shape[-1]
|
594 |
+
return (
|
595 |
+
((2 * math.pi) ** ((1 - 2 * rho) * dim / 2))
|
596 |
+
* (rho ** (-dim / 2))
|
597 |
+
* torch.sqrt(s_hat.prod(-1))
|
598 |
+
* ((s1.prod(-1) * s2.prod(-1)) ** (-rho / 2))
|
599 |
+
* torch.exp(
|
600 |
+
-(1 / rho)
|
601 |
+
* (
|
602 |
+
m1 @ (s1_inv * m1).T
|
603 |
+
+ m2 @ (s2_inv * m2).T
|
604 |
+
- m_hat @ (s_hat * m_hat).T
|
605 |
+
)
|
606 |
+
)
|
607 |
+
)
|
608 |
+
|
609 |
+
|
610 |
+
class CondAE(nn.Module):
|
611 |
+
def __init__(
|
612 |
+
self,
|
613 |
+
encoder,
|
614 |
+
decoder,
|
615 |
+
num_labels,
|
616 |
+
logdet=False,
|
617 |
+
l2_reg=False,
|
618 |
+
disc_loss=True,
|
619 |
+
tau=0.05,
|
620 |
+
**kwargs,
|
621 |
+
):
|
622 |
+
super().__init__()
|
623 |
+
self.encoder = encoder
|
624 |
+
self.decoder = decoder
|
625 |
+
self.dim = dim = decoder.hidden_dim
|
626 |
+
self.locs = nn.Parameter(torch.randn(num_labels, dim))
|
627 |
+
self.log_scales = nn.Parameter(torch.zeros(num_labels, dim))
|
628 |
+
self.num_labels = num_labels
|
629 |
+
self.tau = tau
|
630 |
+
self.logdet = logdet
|
631 |
+
self.l2_reg = l2_reg
|
632 |
+
self.disc_loss = disc_loss
|
633 |
+
|
634 |
+
@property
|
635 |
+
def device(self):
|
636 |
+
return self.encoder.device
|
637 |
+
|
638 |
+
def get_z(self, **inputs):
|
639 |
+
return self.encoder(**get_inputs(inputs, "enc_")), None
|
640 |
+
|
641 |
+
def loss_c(self, z, **inputs):
|
642 |
+
scores = []
|
643 |
+
for i in range(self.num_labels):
|
644 |
+
dist = Independent(
|
645 |
+
Normal(loc=self.locs[i], scale=self.log_scales[i].exp()), 1
|
646 |
+
)
|
647 |
+
scores.append(dist.log_prob(z))
|
648 |
+
log_probs = torch.stack(scores, -1)
|
649 |
+
if self.disc_loss:
|
650 |
+
log_probs = log_probs.log_softmax(-1)
|
651 |
+
loss = F.nll_loss(log_probs, inputs["label"], reduction="none")
|
652 |
+
acc = log_probs.argmax(-1) == inputs["label"]
|
653 |
+
return {"loss_c": loss, "log_probs": log_probs, "acc": acc.float()}
|
654 |
+
|
655 |
+
def get_kl(self):
|
656 |
+
p = MultivariateNormal(
|
657 |
+
torch.zeros(self.dim, device=self.device),
|
658 |
+
torch.eye(self.dim, device=self.device),
|
659 |
+
)
|
660 |
+
kl = 0
|
661 |
+
for i in range(self.num_labels):
|
662 |
+
q = MultivariateNormal(
|
663 |
+
self.locs[i], torch.diag(self.log_scales[i].exp())
|
664 |
+
)
|
665 |
+
kl += torch.distributions.kl_divergence(q, p)
|
666 |
+
if self.logdet:
|
667 |
+
K = torch.exp(-torch.cdist(self.locs, self.locs) ** 2)
|
668 |
+
kl += torch.logdet(K)
|
669 |
+
elif self.l2_reg:
|
670 |
+
K = torch.exp(-torch.cdist(self.locs, self.locs) ** 2)
|
671 |
+
kl += torch.log(
|
672 |
+
torch.linalg.norm(K / K.shape[0], dim=(-2, -1)) ** 2
|
673 |
+
).sum()
|
674 |
+
return kl
|
675 |
+
|
676 |
+
def forward(self, **inputs):
|
677 |
+
z, _ = self.get_z(**inputs)
|
678 |
+
out = self.decoder(z, **get_inputs(inputs, "dec_"))
|
679 |
+
b, n, _ = out["logits"].shape
|
680 |
+
log_probs = out["logits"].log_softmax(-1)
|
681 |
+
log_probs = torch.gather(
|
682 |
+
log_probs[:, :-1],
|
683 |
+
-1,
|
684 |
+
inputs["dec_input_ids"][:, 1:].unsqueeze(-1),
|
685 |
+
).squeeze(-1)
|
686 |
+
log_probs = log_probs.masked_fill(
|
687 |
+
~inputs["dec_attention_mask"][:, 1:], 0
|
688 |
+
)
|
689 |
+
out["loss_r"] = -log_probs.sum(-1)
|
690 |
+
out_c = self.loss_c(z, **inputs)
|
691 |
+
for k, v in out_c.items():
|
692 |
+
out[k] = v
|
693 |
+
out["kl"] = self.get_kl().unsqueeze(0)
|
694 |
+
return out
|
695 |
+
|
696 |
+
|
697 |
+
class BasicCondAE(nn.Module):
|
698 |
+
def __init__(self, encoder, decoder, num_labels, tau=0.05, **kwargs):
|
699 |
+
super().__init__()
|
700 |
+
self.encoder = encoder
|
701 |
+
self.decoder = decoder
|
702 |
+
self.dim = dim = decoder.hidden_dim
|
703 |
+
self.linear = nn.Linear(dim, num_labels)
|
704 |
+
self.num_labels = num_labels
|
705 |
+
self.tau = tau
|
706 |
+
|
707 |
+
@property
|
708 |
+
def device(self):
|
709 |
+
return self.encoder.device
|
710 |
+
|
711 |
+
def get_z(self, **inputs):
|
712 |
+
return self.encoder(**get_inputs(inputs, "enc_")), None
|
713 |
+
|
714 |
+
def loss_c(self, z, **inputs):
|
715 |
+
log_probs = self.linear(z).log_softmax(-1)
|
716 |
+
loss = F.nll_loss(log_probs, inputs["label"], reduction="none")
|
717 |
+
acc = log_probs.argmax(-1) == inputs["label"]
|
718 |
+
return {"loss_c": loss, "log_probs": log_probs, "acc": acc.float()}
|
719 |
+
|
720 |
+
def forward(self, **inputs):
|
721 |
+
z, _ = self.get_z(**inputs)
|
722 |
+
out = self.decoder(z, **get_inputs(inputs, "dec_"))
|
723 |
+
b, n, _ = out["logits"].shape
|
724 |
+
log_probs = out["logits"].log_softmax(-1)
|
725 |
+
log_probs = torch.gather(
|
726 |
+
log_probs[:, :-1],
|
727 |
+
-1,
|
728 |
+
inputs["dec_input_ids"][:, 1:].unsqueeze(-1),
|
729 |
+
).squeeze(-1)
|
730 |
+
log_probs = log_probs.masked_fill(
|
731 |
+
~inputs["dec_attention_mask"][:, 1:], 0
|
732 |
+
)
|
733 |
+
out["loss_r"] = -log_probs.sum(-1)
|
734 |
+
out_c = self.loss_c(z, **inputs)
|
735 |
+
for k, v in out_c.items():
|
736 |
+
out[k] = v
|
737 |
+
out["kl"] = torch.zeros_like(out["loss_r"])
|
738 |
+
return out
|
739 |
+
|
740 |
+
|
741 |
+
def run_cond_ae_epoch(
|
742 |
+
model,
|
743 |
+
batches,
|
744 |
+
opt,
|
745 |
+
num_samples=1,
|
746 |
+
lambda_c=1.0,
|
747 |
+
lambda_r=1.0,
|
748 |
+
beta=1.0,
|
749 |
+
desc="",
|
750 |
+
notebook=True,
|
751 |
+
):
|
752 |
+
losses = {k: [] for k in ("loss_r", "loss_c", "kl", "acc")}
|
753 |
+
t = (
|
754 |
+
tqdm_notebook(batches, desc=desc)
|
755 |
+
if notebook
|
756 |
+
else tqdm(batches, desc=desc)
|
757 |
+
)
|
758 |
+
model.train()
|
759 |
+
for batch in t:
|
760 |
+
model_inputs = {
|
761 |
+
k: v.to(model.device)
|
762 |
+
for k, v in batch.items()
|
763 |
+
if type(v) == torch.Tensor
|
764 |
+
}
|
765 |
+
out = model(**model_inputs)
|
766 |
+
loss = (
|
767 |
+
lambda_r * out["loss_r"] + lambda_c * out["loss_c"]
|
768 |
+
).sum() + beta * out["kl"].sum()
|
769 |
+
opt.zero_grad()
|
770 |
+
loss.backward()
|
771 |
+
opt.step()
|
772 |
+
d = {}
|
773 |
+
for k in ("loss_r", "loss_c", "kl", "acc"):
|
774 |
+
d[k] = out[k].mean().item()
|
775 |
+
losses[k].append(out[k].detach().cpu().numpy())
|
776 |
+
t.set_postfix(d)
|
777 |
+
return {k: np.concatenate(v, 0) for k, v in losses.items()}
|
778 |
+
|
779 |
+
|
780 |
+
def run_cond_ae_eval(
|
781 |
+
model,
|
782 |
+
batches,
|
783 |
+
lambda_c=1.0,
|
784 |
+
beta=1.0,
|
785 |
+
desc="",
|
786 |
+
notebook=True,
|
787 |
+
):
|
788 |
+
losses = {k: [] for k in ("loss_r", "loss_c", "kl", "acc")}
|
789 |
+
t = (
|
790 |
+
tqdm_notebook(batches, desc=desc)
|
791 |
+
if notebook
|
792 |
+
else tqdm(batches, desc=desc)
|
793 |
+
)
|
794 |
+
model.eval()
|
795 |
+
for batch in t:
|
796 |
+
model_inputs = {
|
797 |
+
k: v.to(model.device)
|
798 |
+
for k, v in batch.items()
|
799 |
+
if type(v) == torch.Tensor
|
800 |
+
}
|
801 |
+
with torch.no_grad():
|
802 |
+
out = model(**model_inputs)
|
803 |
+
loss = (
|
804 |
+
out["loss_r"] + lambda_c * out["loss_c"]
|
805 |
+
).sum() + beta * out["kl"].sum()
|
806 |
+
d = {}
|
807 |
+
for k in ("loss_r", "loss_c", "kl", "acc"):
|
808 |
+
d[k] = out[k].mean().item()
|
809 |
+
losses[k].append(out[k].detach().cpu().numpy())
|
810 |
+
t.set_postfix(d)
|
811 |
+
return {k: np.concatenate(v, 0) for k, v in losses.items()}
|
812 |
+
|
813 |
+
|
814 |
+
def generate(
|
815 |
+
model,
|
816 |
+
tokenizer,
|
817 |
+
batch=None,
|
818 |
+
z=None,
|
819 |
+
do_sample=False,
|
820 |
+
max_length=128,
|
821 |
+
**kwargs,
|
822 |
+
):
|
823 |
+
if z is None:
|
824 |
+
with torch.no_grad():
|
825 |
+
z, _ = model.get_z(sample=False, **batch)
|
826 |
+
B, D = z.shape
|
827 |
+
else:
|
828 |
+
z = torch.tensor(z, device=model.device)
|
829 |
+
B, D = z.shape
|
830 |
+
D, L, H, K = (
|
831 |
+
model.decoder.hidden_dim,
|
832 |
+
model.decoder.num_layers,
|
833 |
+
model.decoder.num_heads,
|
834 |
+
model.decoder.prefix_length,
|
835 |
+
)
|
836 |
+
z_up = model.decoder.mlp(z).reshape(B, H, K, D // H, L, 2)
|
837 |
+
keys, vals = (t.squeeze(-1) for t in z_up.chunk(2, dim=-1))
|
838 |
+
layers = tuple(
|
839 |
+
[
|
840 |
+
(k.squeeze(-1), v.squeeze(-1))
|
841 |
+
for k, v in zip(keys.chunk(L, -1), vals.chunk(L, -1))
|
842 |
+
]
|
843 |
+
)
|
844 |
+
output = model.decoder.decoder.generate(
|
845 |
+
input_ids=torch.tensor(
|
846 |
+
[[tokenizer.bos_token_id]] * B, device=model.device
|
847 |
+
),
|
848 |
+
attention_mask=torch.ones((B, K + 1), device=model.device),
|
849 |
+
past=layers,
|
850 |
+
do_sample=do_sample,
|
851 |
+
max_length=max_length,
|
852 |
+
**kwargs,
|
853 |
+
)
|
854 |
+
lst = tokenizer.batch_decode(output[:, 1:])
|
855 |
+
return [l.replace("<|endoftext|>", "") for l in lst]
|
856 |
+
|
857 |
+
|
858 |
+
def get_embeddings(model, batches, desc="", notebook=True):
|
859 |
+
out = []
|
860 |
+
t = (
|
861 |
+
tqdm_notebook(batches, desc=desc)
|
862 |
+
if notebook
|
863 |
+
else tqdm(batches, desc=desc)
|
864 |
+
)
|
865 |
+
model.eval()
|
866 |
+
for batch in t:
|
867 |
+
with torch.no_grad():
|
868 |
+
model_inputs = {
|
869 |
+
k: v.to(model.device)
|
870 |
+
for k, v in batch.items()
|
871 |
+
if type(v) == torch.Tensor
|
872 |
+
}
|
873 |
+
z, _ = model.get_z(sample=False, **model_inputs)
|
874 |
+
out.append(z.detach().cpu().numpy())
|
875 |
+
return np.concatenate(out, 0)
|
876 |
+
|
877 |
+
|
878 |
+
def interpolate(model, tokenizer, a, b, num_steps=10, **kwargs):
|
879 |
+
z = np.stack(
|
880 |
+
[l * b + (1 - l) * a for l in np.linspace(0, 1.0, num_steps)], 0
|
881 |
+
)
|
882 |
+
return generate(model, tokenizer, z=z, **kwargs)
|