Update vision_encoder.py
Browse files- vision_encoder.py +6 -6
vision_encoder.py
CHANGED
@@ -1,10 +1,10 @@
|
|
1 |
-
|
2 |
-
from transformers import ViTModel
|
3 |
from torchvision import transforms
|
4 |
-
import torch
|
5 |
|
6 |
import transformers
|
7 |
|
|
|
8 |
transformers.logging.set_verbosity_error()
|
9 |
|
10 |
class VisionEncoder(nn.Module):
|
@@ -17,9 +17,9 @@ class VisionEncoder(nn.Module):
|
|
17 |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
18 |
])
|
19 |
|
20 |
-
def forward(self,
|
21 |
-
processed_images = torch.stack([self.image_transform(image) for image in images]).to(device)
|
22 |
with torch.no_grad():
|
23 |
-
pixel_values = self.vision_model(
|
24 |
image_features = pixel_values.last_hidden_state
|
25 |
return image_features
|
|
|
1 |
+
from transformers import ViTModel
|
|
|
2 |
from torchvision import transforms
|
3 |
+
import torch
|
4 |
|
5 |
import transformers
|
6 |
|
7 |
+
|
8 |
transformers.logging.set_verbosity_error()
|
9 |
|
10 |
class VisionEncoder(nn.Module):
|
|
|
17 |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
18 |
])
|
19 |
|
20 |
+
def forward(self, images,device):
|
21 |
+
processed_images = torch.stack([self.image_transform(image) for image in images]).to(device)
|
22 |
with torch.no_grad():
|
23 |
+
pixel_values = self.vision_model(processed_images)
|
24 |
image_features = pixel_values.last_hidden_state
|
25 |
return image_features
|