--- license: mit base_model: xlnet/xlnet-base-cased tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: xlnet-base-cased-airlines-news-multi-label results: [] --- # xlnet-base-cased-airlines-news-multi-label This model is a fine-tuned version of [xlnet/xlnet-base-cased](https://huggingface.co./xlnet/xlnet-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2822 - F1: 0.6647 - Roc Auc: 0.8080 - Accuracy: 0.6116 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | No log | 1.0 | 150 | 0.2088 | 0.5979 | 0.7399 | 0.6027 | | No log | 2.0 | 300 | 0.1928 | 0.6596 | 0.7725 | 0.6562 | | No log | 3.0 | 450 | 0.2049 | 0.6327 | 0.7653 | 0.5982 | | 0.2167 | 4.0 | 600 | 0.2226 | 0.6506 | 0.8007 | 0.6027 | | 0.2167 | 5.0 | 750 | 0.2280 | 0.6288 | 0.7666 | 0.5893 | | 0.2167 | 6.0 | 900 | 0.2418 | 0.6295 | 0.7709 | 0.5938 | | 0.0812 | 7.0 | 1050 | 0.2610 | 0.6258 | 0.7722 | 0.5982 | | 0.0812 | 8.0 | 1200 | 0.2756 | 0.6098 | 0.7606 | 0.5804 | | 0.0812 | 9.0 | 1350 | 0.2822 | 0.6647 | 0.8080 | 0.6116 | | 0.0325 | 10.0 | 1500 | 0.2908 | 0.6378 | 0.7873 | 0.5938 | | 0.0325 | 11.0 | 1650 | 0.3050 | 0.6319 | 0.7860 | 0.5938 | | 0.0325 | 12.0 | 1800 | 0.3044 | 0.6277 | 0.7830 | 0.5804 | | 0.0325 | 13.0 | 1950 | 0.3030 | 0.6254 | 0.7804 | 0.5804 | | 0.015 | 14.0 | 2100 | 0.3057 | 0.6319 | 0.7860 | 0.5848 | | 0.015 | 15.0 | 2250 | 0.3013 | 0.6168 | 0.7744 | 0.5670 | ### Framework versions - Transformers 4.41.0 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1