File size: 6,657 Bytes
16895da
7affa90
 
16895da
 
 
 
 
 
 
 
 
 
 
 
 
 
7affa90
16895da
c655b34
 
 
 
16895da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7affa90
 
 
16895da
 
 
7affa90
16895da
 
 
7affa90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16895da
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
---
license: cc-by-sa-4.0
base_model: kiddothe2b/longformer-base-4096
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: longformer-base-4096-airlines-news-multi-label
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# longformer-base-4096-airlines-news-multi-label

This model is a fine-tuned version of [kiddothe2b/longformer-base-4096](https://huggingface.co./kiddothe2b/longformer-base-4096) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2421
- F1: 0.9070
- Roc Auc: 0.6668
- Hamming: 0.9137

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 9e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 65

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1     | Roc Auc | Hamming |
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:-------:|
| No log        | 1.0   | 57   | 0.3454          | 0.8319 | 0.5     | 0.8850  |
| No log        | 2.0   | 114  | 0.3372          | 0.8319 | 0.5     | 0.8850  |
| No log        | 3.0   | 171  | 0.3353          | 0.8319 | 0.5     | 0.8850  |
| No log        | 4.0   | 228  | 0.3310          | 0.8319 | 0.5     | 0.8850  |
| No log        | 5.0   | 285  | 0.3278          | 0.8319 | 0.5     | 0.8850  |
| No log        | 6.0   | 342  | 0.3242          | 0.8319 | 0.5     | 0.8850  |
| No log        | 7.0   | 399  | 0.3206          | 0.8319 | 0.5     | 0.8850  |
| No log        | 8.0   | 456  | 0.3168          | 0.8319 | 0.5     | 0.8850  |
| 0.3599        | 9.0   | 513  | 0.3120          | 0.8319 | 0.5     | 0.8850  |
| 0.3599        | 10.0  | 570  | 0.3089          | 0.8319 | 0.5     | 0.8850  |
| 0.3599        | 11.0  | 627  | 0.3039          | 0.8319 | 0.5     | 0.8850  |
| 0.3599        | 12.0  | 684  | 0.3000          | 0.8319 | 0.5     | 0.8850  |
| 0.3599        | 13.0  | 741  | 0.2969          | 0.8319 | 0.5     | 0.8850  |
| 0.3599        | 14.0  | 798  | 0.2932          | 0.8319 | 0.5     | 0.8850  |
| 0.3599        | 15.0  | 855  | 0.2893          | 0.8449 | 0.5064  | 0.8864  |
| 0.3599        | 16.0  | 912  | 0.2859          | 0.8449 | 0.5064  | 0.8864  |
| 0.3599        | 17.0  | 969  | 0.2824          | 0.8449 | 0.5064  | 0.8864  |
| 0.3111        | 18.0  | 1026 | 0.2800          | 0.8613 | 0.5192  | 0.8894  |
| 0.3111        | 19.0  | 1083 | 0.2773          | 0.8606 | 0.5160  | 0.8886  |
| 0.3111        | 20.0  | 1140 | 0.2752          | 0.8586 | 0.5248  | 0.8894  |
| 0.3111        | 21.0  | 1197 | 0.2727          | 0.8586 | 0.5248  | 0.8894  |
| 0.3111        | 22.0  | 1254 | 0.2703          | 0.8597 | 0.5280  | 0.8901  |
| 0.3111        | 23.0  | 1311 | 0.2679          | 0.8761 | 0.5532  | 0.8953  |
| 0.3111        | 24.0  | 1368 | 0.2665          | 0.8783 | 0.5684  | 0.8975  |
| 0.3111        | 25.0  | 1425 | 0.2645          | 0.8791 | 0.5688  | 0.8982  |
| 0.3111        | 26.0  | 1482 | 0.2627          | 0.8789 | 0.5776  | 0.8990  |
| 0.2854        | 27.0  | 1539 | 0.2611          | 0.8780 | 0.5716  | 0.8982  |
| 0.2854        | 28.0  | 1596 | 0.2597          | 0.8791 | 0.5688  | 0.8982  |
| 0.2854        | 29.0  | 1653 | 0.2584          | 0.8818 | 0.5845  | 0.9012  |
| 0.2854        | 30.0  | 1710 | 0.2570          | 0.8825 | 0.5877  | 0.9019  |
| 0.2854        | 31.0  | 1767 | 0.2564          | 0.8930 | 0.6405  | 0.9115  |
| 0.2854        | 32.0  | 1824 | 0.2556          | 0.8913 | 0.6396  | 0.9100  |
| 0.2854        | 33.0  | 1881 | 0.2547          | 0.8870 | 0.6296  | 0.9071  |
| 0.2854        | 34.0  | 1938 | 0.2531          | 0.8843 | 0.6029  | 0.9041  |
| 0.2854        | 35.0  | 1995 | 0.2522          | 0.8912 | 0.6341  | 0.9100  |
| 0.2722        | 36.0  | 2052 | 0.2516          | 0.8914 | 0.6341  | 0.9100  |
| 0.2722        | 37.0  | 2109 | 0.2507          | 0.8913 | 0.6369  | 0.9100  |
| 0.2722        | 38.0  | 2166 | 0.2501          | 0.8899 | 0.6392  | 0.9093  |
| 0.2722        | 39.0  | 2223 | 0.2491          | 0.8865 | 0.6264  | 0.9063  |
| 0.2722        | 40.0  | 2280 | 0.2486          | 0.8939 | 0.6409  | 0.9122  |
| 0.2722        | 41.0  | 2337 | 0.2483          | 0.8921 | 0.6516  | 0.9115  |
| 0.2722        | 42.0  | 2394 | 0.2474          | 0.8913 | 0.6512  | 0.9108  |
| 0.2722        | 43.0  | 2451 | 0.2466          | 0.8911 | 0.6341  | 0.9100  |
| 0.2652        | 44.0  | 2508 | 0.2461          | 0.8950 | 0.6557  | 0.9137  |
| 0.2652        | 45.0  | 2565 | 0.2459          | 0.8913 | 0.6540  | 0.9108  |
| 0.2652        | 46.0  | 2622 | 0.2453          | 0.8934 | 0.6521  | 0.9122  |
| 0.2652        | 47.0  | 2679 | 0.2446          | 0.8950 | 0.6557  | 0.9137  |
| 0.2652        | 48.0  | 2736 | 0.2445          | 0.8922 | 0.6572  | 0.9115  |
| 0.2652        | 49.0  | 2793 | 0.2442          | 0.8931 | 0.6521  | 0.9122  |
| 0.2652        | 50.0  | 2850 | 0.2440          | 0.8938 | 0.6608  | 0.9130  |
| 0.2652        | 51.0  | 2907 | 0.2436          | 0.8930 | 0.6576  | 0.9122  |
| 0.2652        | 52.0  | 2964 | 0.2432          | 0.8940 | 0.6553  | 0.9130  |
| 0.2603        | 53.0  | 3021 | 0.2430          | 0.8940 | 0.6553  | 0.9130  |
| 0.2603        | 54.0  | 3078 | 0.2428          | 0.8930 | 0.6576  | 0.9122  |
| 0.2603        | 55.0  | 3135 | 0.2425          | 0.8938 | 0.6608  | 0.9130  |
| 0.2603        | 56.0  | 3192 | 0.2424          | 0.8904 | 0.6480  | 0.9100  |
| 0.2603        | 57.0  | 3249 | 0.2424          | 0.8938 | 0.6636  | 0.9130  |
| 0.2603        | 58.0  | 3306 | 0.2422          | 0.8938 | 0.6636  | 0.9130  |
| 0.2603        | 59.0  | 3363 | 0.2421          | 0.9070 | 0.6668  | 0.9137  |
| 0.2603        | 60.0  | 3420 | 0.2419          | 0.9070 | 0.6668  | 0.9137  |
| 0.2603        | 61.0  | 3477 | 0.2418          | 0.8938 | 0.6636  | 0.9130  |
| 0.2578        | 62.0  | 3534 | 0.2418          | 0.8938 | 0.6636  | 0.9130  |
| 0.2578        | 63.0  | 3591 | 0.2416          | 0.8930 | 0.6576  | 0.9122  |
| 0.2578        | 64.0  | 3648 | 0.2416          | 0.8938 | 0.6608  | 0.9130  |
| 0.2578        | 65.0  | 3705 | 0.2416          | 0.8930 | 0.6576  | 0.9122  |


### Framework versions

- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1