File size: 1,744 Bytes
38b9f37
 
 
 
 
 
 
 
 
 
 
 
 
4ec76ed
 
 
38b9f37
 
 
 
 
 
 
 
 
21c9c83
 
 
 
 
38b9f37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21c9c83
 
38b9f37
 
 
 
 
 
 
 
 
21c9c83
 
 
38b9f37
 
 
 
 
 
 
4ec76ed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
license: apache-2.0
base_model: PartAI/TookaBERT-Base
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: my_model
  results: []
language:
- fa
pipeline_tag: token-classification
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# my_model

This model is a fine-tuned version of [PartAI/TookaBERT-Base](https://huggingface.co./PartAI/TookaBERT-Base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5927
- Precision: 0.6667
- Recall: 0.5455
- F1: 0.6
- Accuracy: 0.7660

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 1.0   | 10   | 2.1391          | 0.25      | 0.1818 | 0.2105 | 0.5532   |
| No log        | 2.0   | 20   | 1.7910          | 0.5556    | 0.4545 | 0.5    | 0.7447   |
| No log        | 3.0   | 30   | 1.5927          | 0.6667    | 0.5455 | 0.6    | 0.7660   |


### Framework versions

- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1