--- language: en library_name: bm25s tags: - bm25 - bm25s - retrieval - search - lexical --- # BM25S Index This is a BM25S index created with the [`bm25s` library](https://github.com/xhluca/bm25s) (version `0.2.0`), an ultra-fast implementation of BM25. It can be used for lexical retrieval tasks. BM25S Related Links: * 🏠[Homepage](https://bm25s.github.io) * πŸ’»[GitHub Repository](https://github.com/xhluca/bm25s) * πŸ€—[Blog Post](https://huggingface.co./blog/xhluca/bm25s) * πŸ“[Technical Report](https://arxiv.org/abs/2407.03618) ## Installation You can install the `bm25s` library with `pip`: ```bash pip install "bm25s==0.2.0" # For huggingface hub usage pip install huggingface_hub ``` ## Loading a `bm25s` index You can use this index for information retrieval tasks. Here is an example: ```python import bm25s from bm25s.hf import BM25HF # Load the index retriever = BM25HF.load_from_hub("dadashzadeh/2023_10_en_keywords_Cryptocurrency") # You can retrieve now query = "a cat is a feline" results = retriever.retrieve(bm25s.tokenize(query), k=3) ``` ## Saving a `bm25s` index You can save a `bm25s` index to the Hugging Face Hub. Here is an example: ```python import bm25s from bm25s.hf import BM25HF corpus = [ "northwest bank", "misfits market", "merrick bank login", "marketing", "market place", "jetblue customer service", "internal revenue service", "how to make money online", "gordon food service", "futures market", "frontier airlines customer service", "food banks near me", "first convenience bank", "eastern bank", "dollar bank", ] retriever = BM25HF(corpus=corpus) retriever.index(bm25s.tokenize(corpus)) token = None # You can get a token from the Hugging Face website retriever.save_to_hub("dadashzadeh/2023_10_en_keywords_Cryptocurrency", token=token) ``` ## Advanced usage You can leverage more advanced features of the BM25S library during `load_from_hub`: ```python # Load corpus and index in memory-map (mmap=True) to reduce memory retriever = BM25HF.load_from_hub("dadashzadeh/2023_10_en_keywords_Cryptocurrency", load_corpus=True, mmap=True) # Load a different branch/revision retriever = BM25HF.load_from_hub("dadashzadeh/2023_10_en_keywords_Cryptocurrency", revision="main") # Change directory where the local files should be downloaded retriever = BM25HF.load_from_hub("dadashzadeh/2023_10_en_keywords_Cryptocurrency", local_dir="/path/to/dir") # Load private repositories with a token: retriever = BM25HF.load_from_hub("dadashzadeh/2023_10_en_keywords_Cryptocurrency", token=token) ``` ## Stats This dataset was created using the following data: 497 keywords Cryptocurrency (semrush) | Statistic | Value | | --- | --- | | Number of documents | 602959 | | Number of tokens | 2414020 | | Average tokens per document | 4.0 | ## Parameters The index was created with the following parameters: | Parameter | Value | | --- | --- | | k1 | `1.5` | | b | `0.75` | | delta | `0.5` | | method | `lucene` | | idf method | `lucene` | ## Citation To cite `bm25s`, please use the following bibtex: ``` @misc{lu_2024_bm25s, title={BM25S: Orders of magnitude faster lexical search via eager sparse scoring}, author={Xing Han LΓΉ}, year={2024}, eprint={2407.03618}, archivePrefix={arXiv}, primaryClass={cs.IR}, url={https://arxiv.org/abs/2407.03618}, } ```