Delete README.md
Browse files
README.md
DELETED
@@ -1,51 +0,0 @@
|
|
1 |
-
---
|
2 |
-
model-index:
|
3 |
-
- name: opt-6b7
|
4 |
-
results:
|
5 |
-
- task:
|
6 |
-
type: text-generation
|
7 |
-
dataset:
|
8 |
-
name: Wikitext
|
9 |
-
type: wikitext
|
10 |
-
metrics:
|
11 |
-
- type: perplexity (BASELINE)
|
12 |
-
value: 12.286456082558505
|
13 |
-
- type: perplexity (BASIC)
|
14 |
-
value: 12.300496271519869
|
15 |
-
---
|
16 |
-
This is a d-Matrix functional reference of the OPT-6B7 model.
|
17 |
-
The reference provides the following functional *configurations*:
|
18 |
-
Configuration | Explanation
|
19 |
-
:-- | :--
|
20 |
-
**`BASELINE`** | a reference functionally equivalent to the original model
|
21 |
-
**`BASIC`** | all linear algebraic operands quantized to `MXINT8-64`, and all other operations transformed to approximated kernel simulations
|
22 |
-
|
23 |
-
|
24 |
-
### Usage
|
25 |
-
|
26 |
-
Install d-Matrix [Dmx_Compressor](https://github.com/d-matrix-ai/dmx-compressor) first.
|
27 |
-
```sh
|
28 |
-
pip install dmx_compressor
|
29 |
-
```
|
30 |
-
|
31 |
-
The following is an example model and its evaluation.
|
32 |
-
|
33 |
-
```sh
|
34 |
-
git clone https://github.com/EleutherAI/lm-evaluation-harness
|
35 |
-
cd lm-evaluation-harness
|
36 |
-
pip install -e .
|
37 |
-
```
|
38 |
-
|
39 |
-
```python
|
40 |
-
from dmx.compressor.modeling import DmxModel
|
41 |
-
import lm_eval
|
42 |
-
|
43 |
-
model_args = "pretrained=d-matrix/opt-6b7,trust_remote_code=True"
|
44 |
-
|
45 |
-
lm = lm_eval.api.registry.get_model("hf").create_from_arg_string(model_args, {"batch_size": 1})
|
46 |
-
|
47 |
-
# Transform the model with DMX
|
48 |
-
lm._model = DmxModel.from_torch(lm._model)
|
49 |
-
|
50 |
-
eval_results = lm_eval.evaluate(lm, lm_eval.tasks.get_task_dict(["wikitext"])) # Assign desired task, i.e. "wikitext"
|
51 |
-
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|