--- license: mit base_model: philschmid/bart-large-cnn-samsum tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-large-cnn-samsum-dc results: [] --- # bart-large-cnn-samsum-dc This model is a fine-tuned version of [philschmid/bart-large-cnn-samsum](https://huggingface.co./philschmid/bart-large-cnn-samsum) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7404 - Rouge1: 32.5028 - Rouge2: 13.6008 - Rougel: 23.6102 - Rougelsum: 25.0002 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | 1.9176 | 1.0 | 2676 | 1.7297 | 31.7614 | 13.0816 | 22.9243 | 24.6866 | | 1.4492 | 2.0 | 5352 | 1.5775 | 32.2161 | 13.4673 | 23.7824 | 25.0772 | | 1.1499 | 3.0 | 8028 | 1.5778 | 33.1269 | 14.0686 | 24.2058 | 25.39 | | 0.8947 | 4.0 | 10704 | 1.6344 | 32.9016 | 13.9786 | 24.1741 | 25.5371 | | 0.6905 | 5.0 | 13380 | 1.7404 | 32.5028 | 13.6008 | 23.6102 | 25.0002 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2