File size: 2,482 Bytes
8a8940c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
314e95f
 
8a8940c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
314e95f
8a8940c
 
 
314e95f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a8940c
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
library_name: transformers
license: apache-2.0
base_model: microsoft/swin-base-patch4-window7-224
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: swin-base-patch4-window7-224_rice-disease-02_112024
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# swin-base-patch4-window7-224_rice-disease-02_112024

This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224](https://huggingface.co./microsoft/swin-base-patch4-window7-224) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2147
- Accuracy: 0.9281

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 15

### Training results

| Training Loss | Epoch | Step | Accuracy | Validation Loss |
|:-------------:|:-----:|:----:|:--------:|:---------------:|
| 1.7761        | 1.0   | 212  | 0.7405   | 0.9638          |
| 0.6771        | 2.0   | 424  | 0.8476   | 0.4818          |
| 0.4223        | 3.0   | 636  | 0.8756   | 0.3695          |
| 0.3403        | 4.0   | 848  | 0.8922   | 0.3168          |
| 0.2958        | 5.0   | 1060 | 0.9082   | 0.2835          |
| 0.2709        | 6.0   | 1272 | 0.2664   | 0.9075          |
| 0.2494        | 7.0   | 1484 | 0.2498   | 0.9168          |
| 0.2395        | 8.0   | 1696 | 0.2420   | 0.9182          |
| 0.2286        | 9.0   | 1908 | 0.2365   | 0.9215          |
| 0.22          | 10.0  | 2120 | 0.2296   | 0.9202          |
| 0.2137        | 11.0  | 2332 | 0.2230   | 0.9242          |
| 0.2093        | 12.0  | 2544 | 0.2178   | 0.9281          |
| 0.202         | 13.0  | 2756 | 0.2162   | 0.9295          |
| 0.2017        | 14.0  | 2968 | 0.2151   | 0.9275          |
| 0.1986        | 15.0  | 3180 | 0.2147   | 0.9281          |


### Framework versions

- Transformers 4.46.2
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3