add use code to README
Browse files
README.md
CHANGED
@@ -101,4 +101,88 @@ MARS have been tranied for 3 days on 4xA100.
|
|
101 |
|
102 |
- **Base Model**: Meta Llama 3 8B Instruct
|
103 |
- **Training Dataset**: In-house & Translated Open Source Turkish Datasets
|
104 |
-
- **Training Method**: LoRA Fine Tuning
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
- **Base Model**: Meta Llama 3 8B Instruct
|
103 |
- **Training Dataset**: In-house & Translated Open Source Turkish Datasets
|
104 |
+
- **Training Method**: LoRA Fine Tuning
|
105 |
+
|
106 |
+
|
107 |
+
## How to use
|
108 |
+
|
109 |
+
You can run conversational inference using the Transformers pipeline abstraction, or by leveraging the Auto classes with the `generate()` function. Let's see examples of both.
|
110 |
+
|
111 |
+
### Transformers pipeline
|
112 |
+
|
113 |
+
```python
|
114 |
+
import transformers
|
115 |
+
import torch
|
116 |
+
|
117 |
+
model_id = "curiositytech/MARS"
|
118 |
+
|
119 |
+
pipeline = transformers.pipeline(
|
120 |
+
"text-generation",
|
121 |
+
model=model_id,
|
122 |
+
model_kwargs={"torch_dtype": torch.bfloat16},
|
123 |
+
device_map="auto",
|
124 |
+
)
|
125 |
+
|
126 |
+
messages = [
|
127 |
+
{"role": "system", "content": "Sen korsan gibi konuşan bir korsan chatbotsun!"},
|
128 |
+
{"role": "user", "content": "Sen kimsin?"},
|
129 |
+
]
|
130 |
+
|
131 |
+
terminators = [
|
132 |
+
pipeline.tokenizer.eos_token_id,
|
133 |
+
pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
134 |
+
]
|
135 |
+
|
136 |
+
outputs = pipeline(
|
137 |
+
messages,
|
138 |
+
max_new_tokens=256,
|
139 |
+
eos_token_id=terminators,
|
140 |
+
do_sample=True,
|
141 |
+
temperature=0.6,
|
142 |
+
top_p=0.9,
|
143 |
+
)
|
144 |
+
print(outputs[0]["generated_text"][-1])
|
145 |
+
```
|
146 |
+
|
147 |
+
### Transformers AutoModelForCausalLM
|
148 |
+
|
149 |
+
```python
|
150 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
151 |
+
import torch
|
152 |
+
|
153 |
+
model_id = "curiositytech/MARS"
|
154 |
+
|
155 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
156 |
+
model = AutoModelForCausalLM.from_pretrained(
|
157 |
+
model_id,
|
158 |
+
torch_dtype=torch.bfloat16,
|
159 |
+
device_map="auto",
|
160 |
+
)
|
161 |
+
|
162 |
+
messages = [
|
163 |
+
{"role": "system", "content": "Sen korsan gibi konuşan bir korsan chatbotsun!"},
|
164 |
+
{"role": "user", "content": "Sen kimsin?"},
|
165 |
+
]
|
166 |
+
|
167 |
+
input_ids = tokenizer.apply_chat_template(
|
168 |
+
messages,
|
169 |
+
add_generation_prompt=True,
|
170 |
+
return_tensors="pt"
|
171 |
+
).to(model.device)
|
172 |
+
|
173 |
+
terminators = [
|
174 |
+
tokenizer.eos_token_id,
|
175 |
+
tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
176 |
+
]
|
177 |
+
|
178 |
+
outputs = model.generate(
|
179 |
+
input_ids,
|
180 |
+
max_new_tokens=256,
|
181 |
+
eos_token_id=terminators,
|
182 |
+
do_sample=True,
|
183 |
+
temperature=0.6,
|
184 |
+
top_p=0.9,
|
185 |
+
)
|
186 |
+
response = outputs[0][input_ids.shape[-1]:]
|
187 |
+
print(tokenizer.decode(response, skip_special_tokens=True))
|
188 |
+
```
|