--- license: llama3 language: - tr - en base_model: meta-llama/Meta-Llama-3.1-8B-Instruct model-index: - name: MARS results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge TR v0.2 type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc value: 43.85 name: accuracy - task: type: text-generation name: Text Generation dataset: name: HellaSwag TR type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc value: 46.64 name: accuracy - task: type: text-generation name: Text Generation dataset: name: TruthfulQA TR v0.2 type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: acc name: accuracy value: 48.66 - task: type: text-generation name: Text Generation dataset: name: Winogrande TR v0.2 type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 52.84 name: accuracy - task: type: text-generation name: Text Generation dataset: name: GSM8k TR v0.2 type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 59.30 name: accuracy pipeline_tag: text-generation --- Curiosity MARS model logo

MARS-v0.2

MARS-v0.2 is the second iteration of Curiosity Technology models, built on the foundation of Llama 3.1 8B. This version expands upon the initial MARS model by fine-tuning it with a more comprehensive dataset, with an increased emphasis on mathematical data to enhance its reasoning and problem-solving capabilities. We've continued our commitment to Turkish language processing, utilizing both in-house Turkish datasets and a broader selection of translated open-source datasets. We believe this version will serve the community with even more versatility and depth. MARS have been trained for 3 days on 4xA100. ## Model Details - **Base Model**: Meta Llama 3.1 8B Instruct - **Training Dataset**: In-house & Translated Open Source Turkish Datasets - **Training Method**: LoRA Fine Tuning ## How to use You can run conversational inference using the Transformers pipeline abstraction, or by leveraging the Auto classes with the `generate()` function. Let's see examples of both. ### Transformers pipeline ```python import transformers import torch model_id = "curiositytech/MARS-v0.2" pipeline = transformers.pipeline( "text-generation", model=model_id, model_kwargs={"torch_dtype": torch.bfloat16}, device_map="auto", ) messages = [ {"role": "system", "content": "Sen korsan gibi konuşan bir korsan chatbotsun!"}, {"role": "user", "content": "Sen kimsin?"}, ] terminators = [ pipeline.tokenizer.eos_token_id, pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>") ] outputs = pipeline( messages, max_new_tokens=256, eos_token_id=terminators, do_sample=True, temperature=0.6, top_p=0.9, ) print(outputs[0]["generated_text"][-1]) ``` ### Transformers AutoModelForCausalLM ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch model_id = "curiositytech/MARS-v0.2" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.bfloat16, device_map="auto", ) messages = [ {"role": "system", "content": "Sen korsan gibi konuşan bir korsan chatbotsun!"}, {"role": "user", "content": "Sen kimsin?"}, ] input_ids = tokenizer.apply_chat_template( messages, add_generation_prompt=True, return_tensors="pt" ).to(model.device) terminators = [ tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>") ] outputs = model.generate( input_ids, max_new_tokens=256, eos_token_id=terminators, do_sample=True, temperature=0.6, top_p=0.9, ) response = outputs[0][input_ids.shape[-1]:] print(tokenizer.decode(response, skip_special_tokens=True)) ```