culteejen commited on
Commit
49860f0
·
1 Parent(s): 23690d3

Upload model to Hugging Face

Browse files
PPO-punish-stagnant-bounds.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:593ea9c27718c4a53ee694f20c8a2f2ce14f0228e70cace58b1c88d568d6dc96
3
+ size 150390
PPO-punish-stagnant-bounds/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
PPO-punish-stagnant-bounds/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7e8b2e9240>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7e8b2e92d0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7e8b2e9360>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7e8b2e93f0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f7e8b2e9480>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f7e8b2e9510>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7e8b2e95a0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7e8b2e9630>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f7e8b2e96c0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7e8b2e9750>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7e8b2e97e0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7e8b2e9870>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f7e8b2daf00>"
21
+ },
22
+ "verbose": true,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVuQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgLSwqFlIwBQ5R0lFKUjARoaWdolGgTKJYoAAAAAAAAAADo/UjbD0lAAADIQgAAyEIAAMhCAADIQgAAyEIAAMhCAADIQgAAyEKUaAtLCoWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYKAAAAAAAAAAEBAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCoWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYKAAAAAAAAAAEBAQEBAQEBAQGUaCJLCoWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 10
30
+ ],
31
+ "low": "[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]",
32
+ "high": "[5.2000000e+05 3.1415927e+00 1.0000000e+02 1.0000000e+02 1.0000000e+02\n 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02]",
33
+ "bounded_below": "[ True True True True True True True True True True]",
34
+ "bounded_above": "[ True True True True True True True True True True]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 4,
46
+ "num_timesteps": 204800,
47
+ "_total_timesteps": 200000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1681928439825842716,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVFQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJagAAAAAAAAAK+ldkJkDKC/O6pAQurTyUF6ZbVB6hYKQgAAyEIAAMhCAADIQgAAyELUKYVCuVvSvwAAyEKC8TBCA93KQQmV3UEAAMhC5x3BQgAAyEIAAMhCcvJ8Qlysur5dIKVBAADIQgAAyEIAAMhCpzCcQgAAyEIAAMhCAADIQoB1iEKpjgHAAADIQgAAyEI49f5BTJjjQXvhMkIAAMhCAADIQgAAyEKUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLCoaUjAFDlHSUUpQu"
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.02400000000000002,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVaxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMITBjNyvY1g8CUhpRSlIwBbJRLu4wBdJRHQIayFxVAAyV1fZQoaAZoCWgPQwiEZWzoZglxwJSGlFKUaBVNLQFoFkdAhrWWy1NQCXV9lChoBmgJaA9DCGoWaHdICIXAlIaUUpRoFUvsaBZHQIa31baAWi11fZQoaAZoCWgPQwjd09Udi+9vwJSGlFKUaBVNLQFoFkdAhsJRqfvnbXV9lChoBmgJaA9DCELr4ctEh2/AlIaUUpRoFU0tAWgWR0CG1IzRhMJydX2UKGgGaAloD0MICHWRQtmRb8CUhpRSlGgVTS0BaBZHQIbYCLwWnCR1fZQoaAZoCWgPQwjFrBdD+VJwwJSGlFKUaBVNLQFoFkdAhtqBaC+UQnV9lChoBmgJaA9DCPoLPWI0Jn/AlIaUUpRoFUtEaBZHQIcrlERaouR1fZQoaAZoCWgPQwgOMPMd/EZvwJSGlFKUaBVNLQFoFkdAhy6UB4lhPXV9lChoBmgJaA9DCCxKCcFqsnDAlIaUUpRoFU0tAWgWR0CHPeTgVGkOdX2UKGgGaAloD0MILINqg5PxcMCUhpRSlGgVTS0BaBZHQIdBXBtUGV11fZQoaAZoCWgPQwiE8GjjCE1vwJSGlFKUaBVNLQFoFkdAh0tADq4YrXV9lChoBmgJaA9DCEEOSpjpNHPAlIaUUpRoFU0tAWgWR0CHTscMmWt2dX2UKGgGaAloD0MIqknwhvRVhcCUhpRSlGgVS/RoFkdAh1yVt4zJp3V9lChoBmgJaA9DCMfVyK50YXHAlIaUUpRoFU0tAWgWR0CHX0KsMiKSdX2UKGgGaAloD0MIPzvguiK5hMCUhpRSlGgVS9poFkdAh2eZ0KZ2IXV9lChoBmgJaA9DCEC+hApOgHHAlIaUUpRoFU0tAWgWR0CHbPmA9V3mdX2UKGgGaAloD0MI73N8tJjwhcCUhpRSlGgVTQABaBZHQId29Ql8gIR1fZQoaAZoCWgPQwgsR8hAXjxwwJSGlFKUaBVNLQFoFkdAh3vte+mFanV9lChoBmgJaA9DCDnsvmN4nXDAlIaUUpRoFU0tAWgWR0CHgTLM9r44dX2UKGgGaAloD0MIJ8Eb0iibcsCUhpRSlGgVTS0BaBZHQIeG4AMlTm51fZQoaAZoCWgPQwhI/fUKi2xwwJSGlFKUaBVNLQFoFkdAh5JzPa+N+HV9lChoBmgJaA9DCO5AnfJo4W/AlIaUUpRoFU0tAWgWR0CHmhTLns9kdX2UKGgGaAloD0MIs7J9yFsDccCUhpRSlGgVTS0BaBZHQIeheY6XBxh1fZQoaAZoCWgPQwhHBOPgUmGDwJSGlFKUaBVLumgWR0CHpwIJqqOtdX2UKGgGaAloD0MIRtCYSZShcMCUhpRSlGgVTS0BaBZHQIen2d/axot1fZQoaAZoCWgPQwjdByC1aVKAwJSGlFKUaBVLU2gWR0CHsC8yvcJudX2UKGgGaAloD0MIK4arAyALcMCUhpRSlGgVTS0BaBZHQIe6st/WlM11fZQoaAZoCWgPQwifyf55GquFwJSGlFKUaBVLymgWR0CHvLuiN83NdX2UKGgGaAloD0MI7Sk5J/ZJcMCUhpRSlGgVTS0BaBZHQIfCVaEBbOh1fZQoaAZoCWgPQwhD5sqgOoiBwJSGlFKUaBVLemgWR0CHx8QcPvrodX2UKGgGaAloD0MIutv10pTxccCUhpRSlGgVTS0BaBZHQIfQ1eQdS2p1fZQoaAZoCWgPQwiAnDBhtGtwwJSGlFKUaBVNLQFoFkdAh95H+6y0KXV9lChoBmgJaA9DCOV8sfciPHDAlIaUUpRoFU0tAWgWR0CH46f+S8radX2UKGgGaAloD0MItI8V/LZig8CUhpRSlGgVS7RoFkdAh+Vf6GgzxnV9lChoBmgJaA9DCDi/YaJBEYDAlIaUUpRoFUtOaBZHQIfmfanJkoZ1fZQoaAZoCWgPQwhmg0wyshVywJSGlFKUaBVNLQFoFkdAh+lWycCo0nV9lChoBmgJaA9DCLxbWaLThITAlIaUUpRoFUuZaBZHQIf2R9Vmz0J1fZQoaAZoCWgPQwi8zRsnBdiCwJSGlFKUaBVLrWgWR0CH/XLFGXoldX2UKGgGaAloD0MII/Weyqn1cMCUhpRSlGgVTS0BaBZHQIhbtZTyaux1fZQoaAZoCWgPQwiUap+Ox8NwwJSGlFKUaBVNLQFoFkdAiF1posZpBXV9lChoBmgJaA9DCB6NQ/3uBoTAlIaUUpRoFUvKaBZHQIhf+nqFAVx1fZQoaAZoCWgPQwihTKPJxUpvwJSGlFKUaBVNLQFoFkdAiGocOTaCc3V9lChoBmgJaA9DCKAVGLI6yH7AlIaUUpRoFUs7aBZHQIhut3W4EwF1fZQoaAZoCWgPQwjMmljgq71vwJSGlFKUaBVNLQFoFkdAiHBFANXo1XV9lChoBmgJaA9DCLPQzmnWeXHAlIaUUpRoFU0tAWgWR0CIcsEFGG21dX2UKGgGaAloD0MIJctJKP0/cMCUhpRSlGgVTS0BaBZHQIh2zABT4tZ1fZQoaAZoCWgPQwge/S/XIj9vwJSGlFKUaBVNLQFoFkdAiI6EMTewcHV9lChoBmgJaA9DCJRoyeMpG3HAlIaUUpRoFU0tAWgWR0CIkBPpIMBqdX2UKGgGaAloD0MI3lm77YJacMCUhpRSlGgVTS0BaBZHQIiSrw+dK/V1fZQoaAZoCWgPQwjUf9b8+JB7wJSGlFKUaBVLGmgWR0CIlTci4axYdX2UKGgGaAloD0MIbXNjesJVccCUhpRSlGgVTS0BaBZHQIiXO9DhLoR1fZQoaAZoCWgPQwi9pgcF5c5/wJSGlFKUaBVLSGgWR0CIm9vBrN4adX2UKGgGaAloD0MIdLSqJZ3pbsCUhpRSlGgVTS0BaBZHQIiqLjR2KVJ1fZQoaAZoCWgPQwg9gEV+PZ9ywJSGlFKUaBVNLQFoFkdAiKvhk7Omi3V9lChoBmgJaA9DCK358ZcWPXzAlIaUUpRoFUsUaBZHQIisNHvttyh1fZQoaAZoCWgPQwhnfjUHCC5vwJSGlFKUaBVNLQFoFkdAiLMvCl7+k3V9lChoBmgJaA9DCBLb3QP0E3DAlIaUUpRoFU0tAWgWR0CIuB3ztkWidX2UKGgGaAloD0MI628JwP9ShcCUhpRSlGgVS7VoFkdAiL58kD6nBXV9lChoBmgJaA9DCN7mjZNCJm/AlIaUUpRoFU0tAWgWR0CIyowMYuTSdX2UKGgGaAloD0MIW5TZIJO6bsCUhpRSlGgVTS0BaBZHQIjQlB8hLXd1fZQoaAZoCWgPQwiztikel/RtwJSGlFKUaBVNLQFoFkdAiNQUYKpkw3V9lChoBmgJaA9DCGtFm+PcZXDAlIaUUpRoFU0tAWgWR0CI2AR8twrEdX2UKGgGaAloD0MIritmhLdMb8CUhpRSlGgVTS0BaBZHQIjjbAHmig11fZQoaAZoCWgPQwj/dtmvOxxwwJSGlFKUaBVNLQFoFkdAiOqz2nKnvXV9lChoBmgJaA9DCKqbi7/teG/AlIaUUpRoFU0tAWgWR0CI8PoJzDGcdX2UKGgGaAloD0MIeSPzyF9KccCUhpRSlGgVTS0BaBZHQIj4PJvHcUN1fZQoaAZoCWgPQwgRGsHG9aWGwJSGlFKUaBVNLAFoFkdAiQY8vEjxC3V9lChoBmgJaA9DCPtbAvBvg4LAlIaUUpRoFUulaBZHQIkME7yQPqd1fZQoaAZoCWgPQwjbTIV4pOZvwJSGlFKUaBVNLQFoFkdAiQ6ki2UjcHV9lChoBmgJaA9DCPs+HCREA3DAlIaUUpRoFU0tAWgWR0CJFMfeUILPdX2UKGgGaAloD0MIjjwQWeQuccCUhpRSlGgVTS0BaBZHQIl/gEB8x9J1fZQoaAZoCWgPQwhZUu4+h1dwwJSGlFKUaBVNLQFoFkdAiYV3sPatcXV9lChoBmgJaA9DCAdgAyJERnHAlIaUUpRoFU0tAWgWR0CJh+qJdjXndX2UKGgGaAloD0MIKNap8n2rcMCUhpRSlGgVTS0BaBZHQImN2QIUrTZ1fZQoaAZoCWgPQwjHEWvxKYJuwJSGlFKUaBVNLQFoFkdAiaRoC2c8T3V9lChoBmgJaA9DCBNgWP58i3DAlIaUUpRoFU0tAWgWR0CJqopvxYq5dX2UKGgGaAloD0MI+b8jKtT3bcCUhpRSlGgVTS0BaBZHQIms/dweeWh1fZQoaAZoCWgPQwgK2uTwSYduwJSGlFKUaBVNLQFoFkdAibLQKBun/HV9lChoBmgJaA9DCBjshm0L6W/AlIaUUpRoFU0tAWgWR0CJw0Bd2PkrdX2UKGgGaAloD0MIbk4lA8B5ccCUhpRSlGgVTS0BaBZHQInGk4R28qZ1fZQoaAZoCWgPQwjaG3xhMkZwwJSGlFKUaBVNLQFoFkdAicftM495hXV9lChoBmgJaA9DCElHOZiN/33AlIaUUpRoFUszaBZHQInMt+LFXJZ1fZQoaAZoCWgPQwgTKc3mcYlvwJSGlFKUaBVNLQFoFkdAicz2z4UN8XV9lChoBmgJaA9DCHBgcqNI5HDAlIaUUpRoFU0tAWgWR0CJ3Cb70nPWdX2UKGgGaAloD0MICTVDqmipcMCUhpRSlGgVTS0BaBZHQIng85fdAPd1fZQoaAZoCWgPQwh/wW7YtpRvwJSGlFKUaBVNLQFoFkdAieiDGT9sJ3V9lChoBmgJaA9DCC7/If12hXDAlIaUUpRoFU0tAWgWR0CJ6M2itaIOdX2UKGgGaAloD0MImWclrXi2bsCUhpRSlGgVTS0BaBZHQIn7aE6DGtJ1fZQoaAZoCWgPQwjBpzl5EdRwwJSGlFKUaBVNLQFoFkdAigGKGUOd5XV9lChoBmgJaA9DCIo6cw+JYG/AlIaUUpRoFU0tAWgWR0CKCkbTc6/7dX2UKGgGaAloD0MIdXXHYpvbbsCUhpRSlGgVTS0BaBZHQIoKlALRa5h1fZQoaAZoCWgPQwhnutdJ/ZmDwJSGlFKUaBVLoWgWR0CKHFuTibUgdX2UKGgGaAloD0MIll6bjZUVcMCUhpRSlGgVTS0BaBZHQIod5gogFHJ1fZQoaAZoCWgPQwgKEAUzphVvwJSGlFKUaBVNLQFoFkdAiiQPaURnOHV9lChoBmgJaA9DCDLH8q56OG7AlIaUUpRoFU0tAWgWR0CKKwQkona4dX2UKGgGaAloD0MIXHLcKZ2bcMCUhpRSlGgVTS0BaBZHQIo6vs5XEIh1fZQoaAZoCWgPQwjZfFwbarZwwJSGlFKUaBVNLQFoFkdAijvxGlQ/HHV9lChoBmgJaA9DCD0LQnmfiG7AlIaUUpRoFU0tAWgWR0CKP+IcBEKFdX2UKGgGaAloD0MIBB2taslab8CUhpRSlGgVTS0BaBZHQIpFuFJxvNx1ZS4="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 1120,
80
+ "n_steps": 2048,
81
+ "gamma": 0.99,
82
+ "gae_lambda": 0.5,
83
+ "ent_coef": 0.0,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 10,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
PPO-punish-stagnant-bounds/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b0b182be5a81fdfbf297562f0ee459767a5b7ebcd792c0763dfeeea88e23b54d
3
+ size 90105
PPO-punish-stagnant-bounds/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:67e14c10145f4d81fd5dc108151b880a23934be7b1b4ec59ebe9e5c2f78cdd4b
3
+ size 44417
PPO-punish-stagnant-bounds/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
PPO-punish-stagnant-bounds/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.19.0-35-generic-x86_64-with-glibc2.35 # 36~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Feb 17 15:17:25 UTC 2
2
+ - Python: 3.10.9
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 2.0.0
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Gym: 0.21.0
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - RoombaAToB-punish-stagnant-bounds
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: RoombaAToB-punish-stagnant-bounds
16
+ type: RoombaAToB-punish-stagnant-bounds
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -300.75 +/- 0.00
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **RoombaAToB-punish-stagnant-bounds**
25
+ This is a trained model of a **PPO** agent playing **RoombaAToB-punish-stagnant-bounds**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7e8b2e9240>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7e8b2e92d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7e8b2e9360>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7e8b2e93f0>", "_build": "<function ActorCriticPolicy._build at 0x7f7e8b2e9480>", "forward": "<function ActorCriticPolicy.forward at 0x7f7e8b2e9510>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7e8b2e95a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7e8b2e9630>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7e8b2e96c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7e8b2e9750>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7e8b2e97e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7e8b2e9870>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f7e8b2daf00>"}, "verbose": true, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVuQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgLSwqFlIwBQ5R0lFKUjARoaWdolGgTKJYoAAAAAAAAAADo/UjbD0lAAADIQgAAyEIAAMhCAADIQgAAyEIAAMhCAADIQgAAyEKUaAtLCoWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYKAAAAAAAAAAEBAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCoWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYKAAAAAAAAAAEBAQEBAQEBAQGUaCJLCoWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [10], "low": "[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]", "high": "[5.2000000e+05 3.1415927e+00 1.0000000e+02 1.0000000e+02 1.0000000e+02\n 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02 1.0000000e+02]", "bounded_below": "[ True True True True True True True True True True]", "bounded_above": "[ True True True True True True True True True True]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 4, "num_timesteps": 204800, "_total_timesteps": 200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681928439825842716, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVFQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJagAAAAAAAAAK+ldkJkDKC/O6pAQurTyUF6ZbVB6hYKQgAAyEIAAMhCAADIQgAAyELUKYVCuVvSvwAAyEKC8TBCA93KQQmV3UEAAMhC5x3BQgAAyEIAAMhCcvJ8Qlysur5dIKVBAADIQgAAyEIAAMhCpzCcQgAAyEIAAMhCAADIQoB1iEKpjgHAAADIQgAAyEI49f5BTJjjQXvhMkIAAMhCAADIQgAAyEKUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLCoaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.02400000000000002, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVaxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMITBjNyvY1g8CUhpRSlIwBbJRLu4wBdJRHQIayFxVAAyV1fZQoaAZoCWgPQwiEZWzoZglxwJSGlFKUaBVNLQFoFkdAhrWWy1NQCXV9lChoBmgJaA9DCGoWaHdICIXAlIaUUpRoFUvsaBZHQIa31baAWi11fZQoaAZoCWgPQwjd09Udi+9vwJSGlFKUaBVNLQFoFkdAhsJRqfvnbXV9lChoBmgJaA9DCELr4ctEh2/AlIaUUpRoFU0tAWgWR0CG1IzRhMJydX2UKGgGaAloD0MICHWRQtmRb8CUhpRSlGgVTS0BaBZHQIbYCLwWnCR1fZQoaAZoCWgPQwjFrBdD+VJwwJSGlFKUaBVNLQFoFkdAhtqBaC+UQnV9lChoBmgJaA9DCPoLPWI0Jn/AlIaUUpRoFUtEaBZHQIcrlERaouR1fZQoaAZoCWgPQwgOMPMd/EZvwJSGlFKUaBVNLQFoFkdAhy6UB4lhPXV9lChoBmgJaA9DCCxKCcFqsnDAlIaUUpRoFU0tAWgWR0CHPeTgVGkOdX2UKGgGaAloD0MILINqg5PxcMCUhpRSlGgVTS0BaBZHQIdBXBtUGV11fZQoaAZoCWgPQwiE8GjjCE1vwJSGlFKUaBVNLQFoFkdAh0tADq4YrXV9lChoBmgJaA9DCEEOSpjpNHPAlIaUUpRoFU0tAWgWR0CHTscMmWt2dX2UKGgGaAloD0MIqknwhvRVhcCUhpRSlGgVS/RoFkdAh1yVt4zJp3V9lChoBmgJaA9DCMfVyK50YXHAlIaUUpRoFU0tAWgWR0CHX0KsMiKSdX2UKGgGaAloD0MIPzvguiK5hMCUhpRSlGgVS9poFkdAh2eZ0KZ2IXV9lChoBmgJaA9DCEC+hApOgHHAlIaUUpRoFU0tAWgWR0CHbPmA9V3mdX2UKGgGaAloD0MI73N8tJjwhcCUhpRSlGgVTQABaBZHQId29Ql8gIR1fZQoaAZoCWgPQwgsR8hAXjxwwJSGlFKUaBVNLQFoFkdAh3vte+mFanV9lChoBmgJaA9DCDnsvmN4nXDAlIaUUpRoFU0tAWgWR0CHgTLM9r44dX2UKGgGaAloD0MIJ8Eb0iibcsCUhpRSlGgVTS0BaBZHQIeG4AMlTm51fZQoaAZoCWgPQwhI/fUKi2xwwJSGlFKUaBVNLQFoFkdAh5JzPa+N+HV9lChoBmgJaA9DCO5AnfJo4W/AlIaUUpRoFU0tAWgWR0CHmhTLns9kdX2UKGgGaAloD0MIs7J9yFsDccCUhpRSlGgVTS0BaBZHQIeheY6XBxh1fZQoaAZoCWgPQwhHBOPgUmGDwJSGlFKUaBVLumgWR0CHpwIJqqOtdX2UKGgGaAloD0MIRtCYSZShcMCUhpRSlGgVTS0BaBZHQIen2d/axot1fZQoaAZoCWgPQwjdByC1aVKAwJSGlFKUaBVLU2gWR0CHsC8yvcJudX2UKGgGaAloD0MIK4arAyALcMCUhpRSlGgVTS0BaBZHQIe6st/WlM11fZQoaAZoCWgPQwifyf55GquFwJSGlFKUaBVLymgWR0CHvLuiN83NdX2UKGgGaAloD0MI7Sk5J/ZJcMCUhpRSlGgVTS0BaBZHQIfCVaEBbOh1fZQoaAZoCWgPQwhD5sqgOoiBwJSGlFKUaBVLemgWR0CHx8QcPvrodX2UKGgGaAloD0MIutv10pTxccCUhpRSlGgVTS0BaBZHQIfQ1eQdS2p1fZQoaAZoCWgPQwiAnDBhtGtwwJSGlFKUaBVNLQFoFkdAh95H+6y0KXV9lChoBmgJaA9DCOV8sfciPHDAlIaUUpRoFU0tAWgWR0CH46f+S8radX2UKGgGaAloD0MItI8V/LZig8CUhpRSlGgVS7RoFkdAh+Vf6GgzxnV9lChoBmgJaA9DCDi/YaJBEYDAlIaUUpRoFUtOaBZHQIfmfanJkoZ1fZQoaAZoCWgPQwhmg0wyshVywJSGlFKUaBVNLQFoFkdAh+lWycCo0nV9lChoBmgJaA9DCLxbWaLThITAlIaUUpRoFUuZaBZHQIf2R9Vmz0J1fZQoaAZoCWgPQwi8zRsnBdiCwJSGlFKUaBVLrWgWR0CH/XLFGXoldX2UKGgGaAloD0MII/Weyqn1cMCUhpRSlGgVTS0BaBZHQIhbtZTyaux1fZQoaAZoCWgPQwiUap+Ox8NwwJSGlFKUaBVNLQFoFkdAiF1posZpBXV9lChoBmgJaA9DCB6NQ/3uBoTAlIaUUpRoFUvKaBZHQIhf+nqFAVx1fZQoaAZoCWgPQwihTKPJxUpvwJSGlFKUaBVNLQFoFkdAiGocOTaCc3V9lChoBmgJaA9DCKAVGLI6yH7AlIaUUpRoFUs7aBZHQIhut3W4EwF1fZQoaAZoCWgPQwjMmljgq71vwJSGlFKUaBVNLQFoFkdAiHBFANXo1XV9lChoBmgJaA9DCLPQzmnWeXHAlIaUUpRoFU0tAWgWR0CIcsEFGG21dX2UKGgGaAloD0MIJctJKP0/cMCUhpRSlGgVTS0BaBZHQIh2zABT4tZ1fZQoaAZoCWgPQwge/S/XIj9vwJSGlFKUaBVNLQFoFkdAiI6EMTewcHV9lChoBmgJaA9DCJRoyeMpG3HAlIaUUpRoFU0tAWgWR0CIkBPpIMBqdX2UKGgGaAloD0MI3lm77YJacMCUhpRSlGgVTS0BaBZHQIiSrw+dK/V1fZQoaAZoCWgPQwjUf9b8+JB7wJSGlFKUaBVLGmgWR0CIlTci4axYdX2UKGgGaAloD0MIbXNjesJVccCUhpRSlGgVTS0BaBZHQIiXO9DhLoR1fZQoaAZoCWgPQwi9pgcF5c5/wJSGlFKUaBVLSGgWR0CIm9vBrN4adX2UKGgGaAloD0MIdLSqJZ3pbsCUhpRSlGgVTS0BaBZHQIiqLjR2KVJ1fZQoaAZoCWgPQwg9gEV+PZ9ywJSGlFKUaBVNLQFoFkdAiKvhk7Omi3V9lChoBmgJaA9DCK358ZcWPXzAlIaUUpRoFUsUaBZHQIisNHvttyh1fZQoaAZoCWgPQwhnfjUHCC5vwJSGlFKUaBVNLQFoFkdAiLMvCl7+k3V9lChoBmgJaA9DCBLb3QP0E3DAlIaUUpRoFU0tAWgWR0CIuB3ztkWidX2UKGgGaAloD0MI628JwP9ShcCUhpRSlGgVS7VoFkdAiL58kD6nBXV9lChoBmgJaA9DCN7mjZNCJm/AlIaUUpRoFU0tAWgWR0CIyowMYuTSdX2UKGgGaAloD0MIW5TZIJO6bsCUhpRSlGgVTS0BaBZHQIjQlB8hLXd1fZQoaAZoCWgPQwiztikel/RtwJSGlFKUaBVNLQFoFkdAiNQUYKpkw3V9lChoBmgJaA9DCGtFm+PcZXDAlIaUUpRoFU0tAWgWR0CI2AR8twrEdX2UKGgGaAloD0MIritmhLdMb8CUhpRSlGgVTS0BaBZHQIjjbAHmig11fZQoaAZoCWgPQwj/dtmvOxxwwJSGlFKUaBVNLQFoFkdAiOqz2nKnvXV9lChoBmgJaA9DCKqbi7/teG/AlIaUUpRoFU0tAWgWR0CI8PoJzDGcdX2UKGgGaAloD0MIeSPzyF9KccCUhpRSlGgVTS0BaBZHQIj4PJvHcUN1fZQoaAZoCWgPQwgRGsHG9aWGwJSGlFKUaBVNLAFoFkdAiQY8vEjxC3V9lChoBmgJaA9DCPtbAvBvg4LAlIaUUpRoFUulaBZHQIkME7yQPqd1fZQoaAZoCWgPQwjbTIV4pOZvwJSGlFKUaBVNLQFoFkdAiQ6ki2UjcHV9lChoBmgJaA9DCPs+HCREA3DAlIaUUpRoFU0tAWgWR0CJFMfeUILPdX2UKGgGaAloD0MIjjwQWeQuccCUhpRSlGgVTS0BaBZHQIl/gEB8x9J1fZQoaAZoCWgPQwhZUu4+h1dwwJSGlFKUaBVNLQFoFkdAiYV3sPatcXV9lChoBmgJaA9DCAdgAyJERnHAlIaUUpRoFU0tAWgWR0CJh+qJdjXndX2UKGgGaAloD0MIKNap8n2rcMCUhpRSlGgVTS0BaBZHQImN2QIUrTZ1fZQoaAZoCWgPQwjHEWvxKYJuwJSGlFKUaBVNLQFoFkdAiaRoC2c8T3V9lChoBmgJaA9DCBNgWP58i3DAlIaUUpRoFU0tAWgWR0CJqopvxYq5dX2UKGgGaAloD0MI+b8jKtT3bcCUhpRSlGgVTS0BaBZHQIms/dweeWh1fZQoaAZoCWgPQwgK2uTwSYduwJSGlFKUaBVNLQFoFkdAibLQKBun/HV9lChoBmgJaA9DCBjshm0L6W/AlIaUUpRoFU0tAWgWR0CJw0Bd2PkrdX2UKGgGaAloD0MIbk4lA8B5ccCUhpRSlGgVTS0BaBZHQInGk4R28qZ1fZQoaAZoCWgPQwjaG3xhMkZwwJSGlFKUaBVNLQFoFkdAicftM495hXV9lChoBmgJaA9DCElHOZiN/33AlIaUUpRoFUszaBZHQInMt+LFXJZ1fZQoaAZoCWgPQwgTKc3mcYlvwJSGlFKUaBVNLQFoFkdAicz2z4UN8XV9lChoBmgJaA9DCHBgcqNI5HDAlIaUUpRoFU0tAWgWR0CJ3Cb70nPWdX2UKGgGaAloD0MICTVDqmipcMCUhpRSlGgVTS0BaBZHQIng85fdAPd1fZQoaAZoCWgPQwh/wW7YtpRvwJSGlFKUaBVNLQFoFkdAieiDGT9sJ3V9lChoBmgJaA9DCC7/If12hXDAlIaUUpRoFU0tAWgWR0CJ6M2itaIOdX2UKGgGaAloD0MImWclrXi2bsCUhpRSlGgVTS0BaBZHQIn7aE6DGtJ1fZQoaAZoCWgPQwjBpzl5EdRwwJSGlFKUaBVNLQFoFkdAigGKGUOd5XV9lChoBmgJaA9DCIo6cw+JYG/AlIaUUpRoFU0tAWgWR0CKCkbTc6/7dX2UKGgGaAloD0MIdXXHYpvbbsCUhpRSlGgVTS0BaBZHQIoKlALRa5h1fZQoaAZoCWgPQwhnutdJ/ZmDwJSGlFKUaBVLoWgWR0CKHFuTibUgdX2UKGgGaAloD0MIll6bjZUVcMCUhpRSlGgVTS0BaBZHQIod5gogFHJ1fZQoaAZoCWgPQwgKEAUzphVvwJSGlFKUaBVNLQFoFkdAiiQPaURnOHV9lChoBmgJaA9DCDLH8q56OG7AlIaUUpRoFU0tAWgWR0CKKwQkona4dX2UKGgGaAloD0MIXHLcKZ2bcMCUhpRSlGgVTS0BaBZHQIo6vs5XEIh1fZQoaAZoCWgPQwjZfFwbarZwwJSGlFKUaBVNLQFoFkdAijvxGlQ/HHV9lChoBmgJaA9DCD0LQnmfiG7AlIaUUpRoFU0tAWgWR0CKP+IcBEKFdX2UKGgGaAloD0MIBB2taslab8CUhpRSlGgVTS0BaBZHQIpFuFJxvNx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1120, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.5, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.19.0-35-generic-x86_64-with-glibc2.35 # 36~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Feb 17 15:17:25 UTC 2", "Python": "3.10.9", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (272 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -300.7537369977473, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-19T11:35:09.134964"}