File size: 4,375 Bytes
df4e2e6
 
 
 
 
 
8ff08c8
df4e2e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
base_model: bert-base-cased
model-index:
- name: modelo-epico
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# modelo-epico

This model is a fine-tuned version of [bert-base-cased](https://huggingface.co./bert-base-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2257
- Accuracy: 0.6

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.6677        | 0.1   | 5    | 1.5904          | 0.2      |
| 1.6574        | 0.2   | 10   | 1.6043          | 0.2      |
| 1.6257        | 0.3   | 15   | 1.5648          | 0.25     |
| 1.6168        | 0.4   | 20   | 1.5907          | 0.275    |
| 1.569         | 0.5   | 25   | 1.5746          | 0.275    |
| 1.5479        | 0.6   | 30   | 1.5310          | 0.275    |
| 1.5693        | 0.7   | 35   | 1.4761          | 0.35     |
| 1.4442        | 0.8   | 40   | 1.4862          | 0.325    |
| 1.4322        | 0.9   | 45   | 1.4651          | 0.325    |
| 1.4132        | 1.0   | 50   | 1.3922          | 0.25     |
| 1.2111        | 1.1   | 55   | 1.2754          | 0.5      |
| 1.2534        | 1.2   | 60   | 1.3157          | 0.35     |
| 1.3622        | 1.3   | 65   | 1.5002          | 0.275    |
| 1.224         | 1.4   | 70   | 1.6893          | 0.25     |
| 1.3443        | 1.5   | 75   | 1.5709          | 0.325    |
| 1.4062        | 1.6   | 80   | 1.5901          | 0.275    |
| 1.6972        | 1.7   | 85   | 1.6217          | 0.175    |
| 1.5011        | 1.8   | 90   | 1.4320          | 0.3      |
| 1.2093        | 1.9   | 95   | 1.4006          | 0.375    |
| 1.1032        | 2.0   | 100  | 1.4851          | 0.3      |
| 1.1088        | 2.1   | 105  | 1.5357          | 0.225    |
| 1.0199        | 2.2   | 110  | 1.3272          | 0.4      |
| 0.8264        | 2.3   | 115  | 1.2645          | 0.425    |
| 0.882         | 2.4   | 120  | 1.2772          | 0.425    |
| 0.9676        | 2.5   | 125  | 1.2152          | 0.6      |
| 0.9234        | 2.6   | 130  | 1.1970          | 0.55     |
| 0.9638        | 2.7   | 135  | 1.2324          | 0.525    |
| 0.8617        | 2.8   | 140  | 1.2457          | 0.65     |
| 0.783         | 2.9   | 145  | 1.2522          | 0.6      |
| 0.8607        | 3.0   | 150  | 1.1974          | 0.575    |
| 0.6252        | 3.1   | 155  | 1.2007          | 0.6      |
| 0.6922        | 3.2   | 160  | 1.3761          | 0.425    |
| 0.4611        | 3.3   | 165  | 1.1633          | 0.6      |
| 0.534         | 3.4   | 170  | 1.1376          | 0.55     |
| 0.4077        | 3.5   | 175  | 1.1891          | 0.55     |
| 0.4847        | 3.6   | 180  | 1.2391          | 0.55     |
| 0.573         | 3.7   | 185  | 1.3569          | 0.55     |
| 0.4307        | 3.8   | 190  | 1.2758          | 0.55     |
| 0.4476        | 3.9   | 195  | 1.1952          | 0.625    |
| 0.5455        | 4.0   | 200  | 1.1454          | 0.575    |
| 0.3741        | 4.1   | 205  | 1.1856          | 0.6      |
| 0.2889        | 4.2   | 210  | 1.2064          | 0.575    |
| 0.2342        | 4.3   | 215  | 1.1740          | 0.6      |
| 0.1775        | 4.4   | 220  | 1.1550          | 0.575    |
| 0.2052        | 4.5   | 225  | 1.2035          | 0.575    |
| 0.2276        | 4.6   | 230  | 1.1959          | 0.6      |
| 0.17          | 4.7   | 235  | 1.1827          | 0.625    |
| 0.2608        | 4.8   | 240  | 1.2152          | 0.6      |
| 0.3476        | 4.9   | 245  | 1.2261          | 0.6      |
| 0.3617        | 5.0   | 250  | 1.2257          | 0.6      |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2